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ABSTRACT: 

 

Automatic tools for power line mapping and monitoring are increasingly required by modern societies. Since traditional methods, 

like ground-based onsite inspections, are very labour- and time-intensive, the use of Geomatics techniques is becoming the most 
promising solution. However, there is a need for an all-in-one solution that allows the entire 3D mapping pipeline in a nationwide 

data context. The aim of this paper is to introduce a novel cloud-based solution for nationwide power line mapping. The innovative 

aspects of the system are threefold. First, to exploit image-based 3D reconstruction algorithms to derive dense point clouds over 

power line corridors, thus demonstrating the potential of photogrammetry as a promising alternative to costly LiDAR surveys. 

Second, to supply an all-in-one web-based pipeline that automatically manages all steps of power line mapping, from 3D data 
generation to clearance anomaly detection. Finally, to exploit cloud-computing technology, to handle massive input data. First tests 

show promising results for (i) 3D image-based reconstruction, (ii) point cloud classification and (iii) anomaly detection.   

 

 

Figure 1. Examples of image-based 3D reconstruction of power line corridors. Starting from helicopter-based imagery (a, c), dense 

point clouds of cables, transmission towers, pylons and surrounding environment can be generated (b, d). 
 

 

1. INTRODUCTION 

The development of automatic solutions for mapping 
transmission and distribution electricity grids (hereinafter, 

power lines) is increasingly required by energy companies, as 

modern society needs a reliable and continuous supply and 

distribution of electric power. The tremendous impact of power 

outages on people and businesses is clearly demonstrated by 
two well-known blackout events, that left 95% of Italy and 

more than 10 million people in Europe without power in 2003 

and 2006, respectively. These events, among others, showed 

how the safety of power line corridors, including both 

infrastructure components (cables, towers, insulators, switches, 
etc.) and surrounding key objects (terrain, buildings, trees, etc.), 

plays a vital role in present-day society. Particularly, power line 

monitoring involves two main aspects, the detection of potential 

hazards and the analysis of power line structural stability. The 

former is very critical and relies on the clearance anomaly 
detection, to check whether the distance between power line and 

non-power line objects is within the safety range.  

Since traditional methods, like ground-based onsite inspections 

by foot patrol, are very labour- and time-consuming, the use of 

Geomatics platforms, sensors and techniques is becoming the 
most promising solution. The wide overviews given by Mu et 

al. (2009), Mirallès et al. (2014) and Matikainen et al. (2016), 

clearly describe the efforts of the Geomatics community in 

providing for advanced mapping solutions of power line 

corridors. Although integrated solutions were also proposed 

(Kremer, 2011), airborne LiDAR, especially from helicopter-
based platforms, seems to be generally the most widely adopted 

technology for power line monitoring (Zhu and Hyyppä, 2014; 

Guo et al., 2016a; Chen et al., 2018). Indeed, it provides for a 

fast method of data collection and classification with high 

automatism and accuracy of height information. However, 
airborne LiDAR surveys are still an expensive data collection 

technique. On the other hand, advances in the radiometric 

quality of the images as well as in photogrammetry and 

computer vision, particularly those related to the development 

of innovative DIM (dense image matching) algorithms (Haala 
and Rothermel, 2012; Remondino et al., 2014), have increased 

automation in image-based 3D reconstruction of scenes, with 

the goal of generating high spatial resolution 3D point clouds. If 

a suitable redundancy and a good geometric configuration of 

image rays are available, photogrammetric point clouds can 
today feature a spatial resolution equal to the GSD (ground 

sample distance) of the original imagery , and a vertical accuracy 

below the GSD level. Despite this, only few attempts have been 

made so far to reconstruct 3D point clouds of power lines from 

multiple images, mainly acquired from UAV-based platforms 
(Jozkow et al., 2015; Jiang et al., 2017; Zhang et al, 2017), 

while, generally, airborne imagery has been exploited only to 

extract the 2D position of power line components (Oberweger et 

al., 2014).  
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1.1 Power line 3D mapping 

Starting from a LiDAR or photogrammetric point cloud of the 

power line corridor, the 3D mapping task generally involves 

three main steps, namely (i) point cloud classification, to extract 

power line points, (ii) point cloud modelling, to reconstruct the 

geometry of single power line components and (iii) clearance 
anomaly detection, to identify potential interference issues.  

The most recent studies exploit machine learning methods and a 

large number of features to accomplish the prediction of power 

line and non-power line class labels, e.g. by applying a Random 

Forest classifier (Kim and Sohn, 2013) or a JointBoost classifier 
(Guo et al., 2015). Once points are semantically interpreted, the 

modelling process aims to accomplish the 3D reconstruction 

task of single power line elements with a data-driven or a 

model-driven approach. Generally, continuous mathematic 

models are fitted to the cable points, to reconstruct power line 
spans. Either catenary curve fitting (Sohn et al., 2012; Jozkow 

et al., 2015) or other parametric models (Ritter and Benger, 

2012; Guo et al., 2016a) are used to create the final model. Few 

studies focus on the automatic reconstruction of power pylons, 

by either adopting a data-driven (Han, 2012), a model-driven 
(Guo et al., 2016b) or a hybrid (Zhou et al., 2017) approach. 

Finally, distances between the infrastructure and surrounding 

objects can be measured to evaluate the clearance hazard. For 

instance, in Chen et al. (2018) the clearance measurements are 

piecewise solved based on differential geometry: the spots 
where the minimum distance is lower than the safe threshold, 

are considered as anomalies.      

 

1.2 Scalability and Cloud processing 

Many research projects developed automatic algorithms to 

accomplish the single steps of power line 3D mapping. 

However, an all-in-one solution that addresses the entire 3D 

mapping pipeline, including the final web visualization and 

access of mapping results, is still missing. Furthermore, if 
nationwide scalability is required, it is crucial to figure out a 

solution which can efficiently process a massive amount of data. 

So far, some image-based 3D reconstruction services 

(Vergauwen and Gool, 2006; Tefera et al., 2018) and point 

cloud processing frameworks (Liu and Boehm, 2015) running in 
the Cloud have been developed. Nevertheless, a solution 

specifically designed for processing big geospatial data for 

power line mapping, is still missing. Finally, the potential for 

power line 3D mapping via photogrammetric techniques is still 

underexploited, despite its higher cost-effectiveness compared 
to LiDAR. 

 

1.3 Paper objectives 

This paper reports a step forwards in power line mapping, by 

introducing a novel cloud-based processing solution for 
nationwide applications. This solution combines state-of-the-art 

methods embedded in a web-based platform, designed to: 

 automatically perform the entire photogrammetric 3D 

reconstruction pipeline, from images to dense point clouds 

(Figure 1); 

 automatically classify point clouds and detect clearance 

anomalies (either from photogrammetric or LiDAR data, if 

existing LiDAR surveys are available); 

 visualize 3D results and 2D ancillary data (maps, anomalies, 
images, etc.) in a web viewer; 

 manage new and existing spatial and non-spatial data, 

within a unique responsive web-based environment; 

 update existing power line maps. 

In the following sections, the processing workflow (Section 2), 
the platform infrastructure and functionality  (Section 3) and 

exemplary results (Section 4), will be described and discussed. 

 

2. METHODOLOGY 

The general workflow of data processing is summarized in 
Figure 2 and explained in the next sections. 

 

 

Figure 2. The general workflow of power line mapping (yellow 

cells are the raw input data, blue cells are the outcomes). 

 
2.1 Flight planning and image acquisition 

Power lines feature various types of wires, depending on the 

transported tension (or voltage): low tension (LT), middle 

tension (MT) and high tension (HT) lines. According to the 

tension, wires (cables) have a diameter from some mm to some 
cm. There are three main issues, that should be considered when 

planning a photogrammetric survey of a power line corridor: 

1) image scale should be large enough to represent the cable 

structure with enough pixel information; 

2) image overlap should be large in order to increase the 
redundancy of image rays, thus enabling a reliable 3D 

reconstruction of wires; 

3) given the elongated shape of transmission lines, the flight 

efficiency should be maximized via single-line image 

network.  
Aircrafts, helicopters and unmanned aerial vehicles (UAVs) 

have been used for power line mapping tasks. Each of them 

features specific advantages: aircraft are generally used for HT 

lines, while helicopters are more suitable for LT and MT. 
Indeed, helicopter’s benefits are twofold: compared to aircrafts, 

they are able to fly closer to the power lines, thus achieving sub-

centimetre GSD, and can follow a line which has sharp turns; 

compared to UAV, they can cover larger areas more efficiently.  

In case of a LT line, with a helicopter platform mounting a dual-
camera system with oblique backward and forward views (4864 

x 3248 px), image acquisitions are planned according to the 

following rules:  

 few mm mean GSD on the ground (ca. 4 mm); 

 at least 75% image overlap; 

 single-line network, that follows the corridor shape and is 

partially misaligned with respect to the power line, to avoid 

self-occluded areas of the infrastructure elements; 
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Figure 3. Examples of two helicopter-based camera networks with the recovered camera poses (blue pyramids) over the sparse point 
cloud (left and centre), and forward-looking image acquired over a LT power line (right). 

 

 good coverage of the corridor (ca. 30 m width by each side 

of the transmission line), to detect any potential interference 
between power line and non-power line objects. 

In order to georeference the image network and avoid as much 

as possible field surveying measurements, accurate navigation 

data (GNSS/IMU observations) are collected and post-

processed. A typical image network geometry is displayed in 
Figure 3, together with an example of the acquired images 

showing the high level of detail over the transmission line. A 

typical helicopter-based image network consists of some 1000 

images (incl. both forward- and backward-looking views) 

acquired on a strip of approximately 2 km. 
 

2.2 Image processing and 3D reconstruction 

The photogrammetric 3D reconstruction problem is addressed 

by three steps, namely 2D feature-based matching, bundle block 

adjustment (BBA) and dense image matching (DIM). First, 
image correspondences are identified across the different views 

at the original image resolution, by adopting a feature-based 

method with SIFT operator (Lowe, 2004). Second, image 

orientation parameters are estimated within a free-network 

BBA. To increase the precision of the triangulated 3D points, a 
threshold on the minimum intersection angle between image 

rays is set up (10 deg.). To solve the scale and datum 

ambiguities, the free-network bundle adjustment is followed by 

a rigid similarity transformation, using the post-processed on-

board navigation observations as (mandatory) input. The 
adoption of field-surveyed GCPs (ground control points) as 

reference data requires (i) costly and labour-intensive 

campaigns, especially in case of impervious and long power 

lines corridors, and (ii) a time-consuming procedure of point 

marking, that strongly depends on the user’s expertise. 
Therefore, a georeferencing approach based on on-board 

GNSS/IMU data is here preferred and confirmed to give an 

accuracy-level that meets the requirements of the present 

application (few decimetres). Finally, a dense 3D reconstruction 

via pixel-based image matching algorithm is carried out. This is 
performed using the first-level image pyramid and a 5-pixel size 

for the NCC (normalized cross correlation) window.  

An image block of some 1000 images normally produces a 3D 

point cloud of approximately 200,000,000 points. 

The entire image processing workflow is based on the open 
source pipeline COLMAP (Schönberger and Frahm, 2016; 

Schönberger et al., 2016), with processing parameters 

customized ad-hoc to find the best compromise between 

efficiency (due to the massive size of input data) and 

accuracy/completeness of power line reconstruction. 

   
2.3 Point cloud classification 

Once the photogrammetric point clouds have been generated (or 

an external LiDAR point cloud has been imported, in case an 

existing LiDAR dataset is used), the classification phase starts, 

in order to semantically interpret the 3D points. The aim is to 
extract the following classes of interest: pylons, transmission 

towers, cables, vegetation, buildings, water, road and ground. 

The selection of these classes follows the national legislation on 

clearance anomaly detection, that sets specific clearance 

thresholds for these different power line / non-power line 
objects. To achieve this, we have adopted a classification 

approach following Weinmann et al. (2014). It is formulated as 

a supervised learning problem and executed in three steps:  

 feature computation: the selection of point features plays an 
essential role in machine learning problems, as it can 

strongly enhance the algorithm performance in terms of 

both speed and accuracy. Five geometric features are here 

experimentally used as relevant and suitable measures to 

characterize our point clouds: distance to plane, eigenvalues 
of the neighbourhood, elevation, local vertical dispersion 

and verticality. Additionally, features based on HSV (hue, 

saturation, and value) colorimetric content and number of 

returns are specifically exploited for photogrammetric and 

LiDAR point clouds, respectively. The training dataset of 
correct labels was manually annotated on existing power 

line point clouds. Particularly, the ratio between the number 

of points correctly assigned to each class was properly 

adjusted to prevent generating a biased learning model.  

 model training: starting from the point cloud (previously 
shifted to local coordinate system, to avoid working with 

cartographic coordinates), with the computed 3D features 

and the correct labels, a classifier is then trained using 

Random Forest (Breiman, 2001). This learning method was 
experimentally selected based on its efficiency and 

prediction accuracy. Literature shows that among the 

machine learning techniques, random forest has been an 

excellent tool to learn feature representations given their 

robust classification power and easily interpretable learning 
mechanism (Belgiu and Dragut, 2016).  

 prediction: once the classifier is generated, the prediction 

process can be performed on the input point cloud, by 

traversing the tree structure with feature information. 
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The adopted point cloud classification method is based on the 
supervised approach implemented in the Computational 

Geometry Algorithms Library (Giraudot and Lafarge, 2018) and 

the Random Forest Template Library (ETHZ Random Forest, 

2018).   

     
2.4 Anomaly detection and vectorization 

Starting from the classified point cloud, the clearance anomaly 

detection computes the distances between the power line objects 

(pylons, transmission towers and cables) and the non-power line 

objects (buildings, vegetation, water, road and ground), to detect 
the spots where the safe clearance thresholds are exceeded. 

Considering the scalability of the platform under development 

and the forthcoming massive amount of data (ca. 3 GB for km), 

it is inefficient to estimate an analytical solution of the point-to-

point distance. Therefore, the adopted anomaly detection step is 
formulated as a nearest neighbour search problem based on k-d 

trees to iteratively compute the closest points. Indeed, k-d trees 

are efficient space-partitioning data structure, derived as 

generalization of binary search trees. Particularly, the root 

represents the whole point cloud, whereas the leaves (also called 
buckets) provide a completely disjointed partition of the points. 

To generate a balanced k-d trees structure, thus ensuring that 

every k-d tree entry has the same probability, a sliding midpoint 

rule is applied, i.e. the axis and splitting point defined at each 

node are selected in such a way as to avoid long and thin cells. 
Once k-d trees are constructed, they can be recursively queried 

for the closest neighbours of any given point. Therefore, after 

introducing the clearance threshold specifically defined for each 

class, the algorithm only returns those non-power line points 
that are closer than this distance to any power line point. The 

the k-d trees algorithm available in SciPy (Jones et al., 2001) is 

adopted here. In order to efficiently manage a large amount of 

data, the NumPy structure (Van Der Walt et al., 2011) is 

furthermore exploited.   
Finally, once classes of interest are labelled and (potential) 

anomalies are detected, the 2D position of power line elements 

and anomaly spots should be identified on the map. This task is 

accomplished by two steps, i.e. data clustering and 2D 

vectorization. First, a density-based spatial clustering method is 
applied to segment each single pylon (or, transmission tower), 

anomaly spot and power line span. For this, we used the 

DBSCAN algorithm (Ester et al., 1996) available in scikit-learn 

(Pedregosa et al., 2011). Second, false anomalies (generated due 

to, e.g. errors in the classification results – see Section 4) are 
detected and eliminated, by introducing a threshold on the 

minimum number of points a cluster should include to be 

accepted as an anomaly spot. Third, the vectorization step is 

performed: the 2D positions of pylons (or transmission towers) 

and anomalies are identified by the barycentre of their clusters, 
while power lines are modelled as linear segments connecting 

the points of each span cluster.         

 

3. INFRASTRUCTURE 

The infrastructure of the web-based platform is summarized in 
Figure 4. It adopts the AWS (amazon web services) Cloud 

technology, to parallelize the processing workflows and to be 

scalable (AWS, 2018). The platform is developed with the IaaS 

paradigm (infrastructure as a service), using different types of 

instances and services. Particularly, the technological setup 
adopts AWS: Simple Storage Service (S3) for the storage, 

MongoDB on an m4.large instance (2 CPU) as a NoSQL DB, 

and a m4.large instance for the 2 Http Server and 2 java 

Application server. Finally, an AWS g3.4xlarge instance with 8 

GPU, 32 CPU is used for the GPU Server. Totally, the cost of 

the service amounts to 1.9 USD per hour. The system consists 
of a fully automated process and includes two main 

components: the manager and the rendering applications.  

 

 
Figure 4. The infrastructure of the developed web application 

with the Manager application, based on AWS Cloud technology 

and the Rendering part. 

 
3.1 Manager application 

The manager application (WebApp Manager) manages and runs 

the automated data processing steps. The latter depends on the 

input data, either imagery or LiDAR data. In the first case, 

images are uploaded in AWS S3 and processed as reported in 
Section 2.2, followed by cloud classification and anomaly 

detection. If LiDAR point clouds are uploaded in AWS S3, the 

semantic interpretation directly starts. At the end of the 

classification (Section 2.3), semantic point clouds and derived 

vector representations of power line elements and anomalies are 
exported and passed to the visualization framework (Rendering 

application). The back end of the WebApp Manager is multi-

GPU and implemented in Java. Since multiple users can run 

different processing steps simultaneously, a FIFO (first in first 

out) multi-queue scheduling strategy is implemented, to handle 
concurrent reconstruction processes. Particularly, resources are 

evenly distributed among the users, based on the number of 

available CPU cores and GPUs on the server. The front end of 

the WebApp Manager provides the user with a GUI to visualize 

all the 2D/3D datasets uploaded in the system and ready to be 
processed, together with the status of the workflow steps. When 

a process ends, results can be displayed in the rendering 

application. 

 

3.2 Rendering application 

The rendering application (WebApp Rendering) manages the 

interactive visualization of all data ingested and generated by 

the processing workflow. The user interface includes the 

following components: 

 search box, that provides the user with a search tool, to 
query the power line database by code or name. 

Additionally, it displays anomalies, if any, detected in the 

selected 3D power line; 

 2D map navigator, based on OpenStreetMap, that displays 
the mapped positions of pylons, transmission towers, power 

line spans and anomalies;   

 3D point cloud navigator, embedded in the landing page, 

that allows the user to interactively manipulate the point 
clouds in a 3D environment. It is based on Potree, an open 

source WebGL-based point cloud render, able to handle 

large point datasets (Schütz, 2016). Within the navigator, 

the user can visualize the point clouds, with all the semantic 

contents added by the process (e.g. labels and anomalies), 
and extract additional information (profiles, distances, etc.); 
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Figure 5. The user interface of the WebApp Rendering: the left panel is for searching and information display, in the other cells the 
3D point cloud, map and image data are displayed. 

 

 photo slider, that shows the images used as input for the 

photogrammetric process. Particularly, by selecting a point 
in the 3D navigator, the image where that point is visible in 

the centre most position, is automatically displayed. 

These windows are integrated into the same page (Figure 5) and 

linked to each other, to interactively display the data of interest.  

 
4. RESULTS 

To demonstrate the performance of the processing workflow, 

and critically discuss its open issues, two examples are hereafter 

commented and referred to as MT 1 and MT 2. They represent a 

subset of two helicopter-based photogrammetric surveys, 
performed over MT transmission lines (cable dimeter below 1 

cm). In both cases, the flight height and on-board cameras were 

selected to achieve a sub-cm GSD on the ground. 

 

4.1 3D reconstruction and classification 

The results of the image-based 3D reconstruction pipeline are 

shown in Figure 6, with two detailed views of the generated 

RGB point clouds (2,041,851 tot. points reconstructed in MT 1, 

801,357 in MT 2).  

Although small gaps are present on the transmission lines, due 
to the small size and poor texture of the cables, the amount of 

details reconstructed by the algorithm is suitable to clearly 

identify the power line elements. Indeed, the shapes of both 

pylons and cable spans are continuously represented by a good 

number of points, whose distribution is fairly even over the 

entire elements. The successive classification step returns 

promising labelled results (Figure 7). A first qualitative 
evaluation shows that the majority of points are correctly 

labelled, thus demonstrating that the selected features have good 

potential in characterizing both power line and non-power line 

elements. However, a few errors are visible, such as: 

 off-the-ground elements on the road (e.g. guard rails) are 
classified as cables, due to their elongated shape and colour; 

 misclassifications between power line elements and 

vegetation, e.g. tree trunks classified as pylons, or pylons 
heads labelled as vegetation, due to their geometric 

similarity; furthermore, small portions of cables are 

interpreted ad vegetation, if they are noisy reconstructed; 

 misclassifications between ground and roads, e.g. shaded 
parts of road labelled as ground, due to the DIM noise in 

such textureless areas, or some small unpaved roads 

wrongly identified as ground, given their irregular surface. 

These remarks are confirmed by a quantitative assessment, 

performed by comparing the classification results against the 
manually labelled ground truths. The recall (R) and precision 

(P) values (with their corresponding F1-score) are provided for 

each class in Table 1, together with the overall accuracy (OA) 

of the classifier on these two datasets. The classes “water” and 

“transmission tower” are missing in both datasets, therefore 
they are not considered in the following. 

 

 
OA 

[%] 

Cable (C) Road (R) Pylon (P) Ground (G) Building (B) Vegetation (V) 

 
R 

[%] 

P 

[%] 
F1 

R 

[%] 

P 

[%] 
F1 

R 

[%] 

P 

[%] 
F1 

R 

[%] 

P 

[%] 
F1 

R 

[%] 

P 

[%] 
F1 

R 

[%] 

P 

[%] 
F1 

MT 1 96.63 90.00 99.97 0.95 77.19 96.82 0.86 18.35 100 0.31 98.42 86.97 0.92 - - - 99.78 99.90 0.99 

MT 2 94.95 76.55 98.12 0.86 49.79 98.62 0.66 69.95 71.89 0.71 95.52 95.93 0.96 50.52 91.98 0.65 99.93 93.72 0.97 

Table 1. Overall accuracy (OA, in %), recall (R, in %), precision (P, in %) and F1-score values achieved in the two tests (the symbol  
“-“ indicates that the class “Building” is missing in MT 1). Values in italic indicate the main issues, to be addressed in the future.  
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Figure 6. Two details of the 3D point clouds generated over the power line corridor (left: MT 1, right: MT 2). 

 

 
Figure 7. RGB point clouds (a: MT 1, b: MT 2) and corresponding classification results (c: MT 1, d: MT 2). The detailed views show 
examples where the classification algorithm failed to correctly label the points. 

 

 
Figure 8. Results of the anomalies detected by the developed procedure and classified as: correct anomalies (true positive), false 

alarms eliminated (false positive automatically discarded), false anomalies not eliminated (false positive) and non-detected alarms 

(false negative). 
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If, on the one hand, the classification results show a high level 
of completeness and quality for ground and vegetation points, 

on the other hand the performance of the classifier is less 

optimal, while predicting man-made objects. Particularly, the 

multi-class confusion matrix in Table 2 (corresponding to MT 

2) clearly points out the main mislabelled cases. The latter, as 
discussed above, mostly generate from misclassification issues 

between ground and road, vegetation and ground, cable and 

vegetation, pylon and vegetation. These classification errors can 

cause false positives or false negatives to be generated during 

the anomaly detection step or force the k-d trees search to apply 
a wrong clearance threshold, since ground and road feature 

distinctive safety ranges. 

 

G
ro

u
n

d
 t

ru
th

 l
a
b

el
s C 1,097 11 53 2 0 270 

R 0 17,817 0 16,957 0 1,008 

P 1 0 156 0 0 66 

G 0 223 0 402,770 70 18,602 

B 0 0 1 132 2,800 2,609 

V 20 15 7 13 174 336,484 

 C R P G B V 

 Predicted labels 

Table 2. Multi-class confusion matrix for classification results 
achieved in MT 2 (green cells represent the number of true 

positive per each class). 

   

4.2 Anomaly detection  

Starting from the labelled results, the anomaly detection step 
gives fairly promising results. Figure 8 shows the anomalies 

detected by the k-d trees nearest neighbour search, 

distinguishing between correctly detected alarm spots (true 

positive), false alarms, correctly eliminated by the a-posteriori 

density check (false positive automatically discarded) and false 
anomalies, not automatically discarded (false positive). Most of 

false alarms are efficiently detected, since they are due to a 

sparse number of points erroneously labelled in the 

classification step. On the other hand, false positives are mainly 

generated by pylons misclassification errors. Indeed, when trees 
trunks are interpreted as pylons, or pylons heads are labelled as 

vegetation, the amount of points detected as anomalies exceeds 

the threshold set in the automatic density check. To address 

these issues, a more accurate classification of power line pylons 

should be developed, differentiating between the pylon body 
and its head, in order to model the overall shape in a more 

accurate way. Finally, a false negative is generated when small 

portions of the cables are labelled as vegetation and are situated 

close to vegetated areas: in this case, a more accurate 3D 

reconstruction of cables should be pursued, in order to avoid the 
misclassified noisy areas. 

 

5. CONCLUSIONS AND FUTURE WORKS 

We have reported the development of a Cloud-based solution, 

for nationwide power line mapping, mainly from image data. 
The strength and innovative aspects of the system can be 

summarized as follows: 

 it exploits image-based 3D reconstruction algorithms to 

automatically derive dense point clouds over power line 
corridors, thus showing the potential of photogrammetry as 

a promising alternative to (costly) LiDAR surveys; 

 it provides for an all-in-one web-based pipeline, that 

automatically manages all steps of power line mapping, 

from 3D data generation to clearance anomaly detection and 
data visualization; 

 it can also process and semantically segment existing 
LiDAR-based point clouds, showing the reliability  and 

flexibility of the classification method; 

 it exploits Cloud-computing and -storage technologies, to 
upscale the power line mapping problem to a nationwide 

data context (i.e. long corridors of some km length). 

Tests executed so far showed the good performance of the 

processing workflow, that was able to generate promising 

results for (i) 3D image-based reconstruction, (ii) point cloud 
classification and (iii) anomaly detection. Until now, only a few 

datasets were available and evaluated, whereas in the future a 

larger quantitative assessment will be carried out, incl. the 

comparison between LiDAR- and photogrammetry-derived 

mapping results over the same area.  The main open issues that 
will be further investigated in the future include: 

 a strategy for mathematically modelling the geometry of 

power line spans in order to cope with the small data gaps 

evident in the cable reconstruction results. So far, no 
parametric modelling was performed, in order to avoid 

inappropriate fitting results and use only the triangulated 3D 

points; however, the adoption of robust models, that also 

consider external ambient conditions, may improve the 

geometry reconstruction and anomaly detection steps; 

 solutions to increase the accuracy of the classification, that 

represents an essential pre-requisite for reducing the number 

of false positives/negatives in the anomaly detection step. 

This will involve (i) increasing the size of the training 

dataset, also considering other classes of objects (e.g. pylons 
heads), (ii) differentiating the training dataset based on the 

geographical area and land cover (ii) exploring the use of 

deep learning architectures for 3D classification (e.g. 

SPGraph – Landrieu and Simonovsky, 2018). 

Finally, the platform will be further generalized to manage and 
process other types of input datasets, e.g. terrestrial mobile 

mapping system (MMS) data, in the form of both point clouds 

and panoramic images. Indeed, especially in urban contexts, 

MMS surveys are able to cope with viewpoint restrictions of 

airborne data collection, thus reconstructing the geometry of 
power line elements with higher accuracy and completeness.  
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