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ABSTRACT: 
 
A majority of studies involving remote sensing LULC classification conducted classification accuracy assessment without 
consideration of the training data uncertainty. In this study we present new concepts of LULC classification accuracies, namely the 
training-sample-based global accuracy and the classifier global accuracy, and a general expression of different measures of 
classification accuracy in terms of the sample dataset for classifier training and the sample dataset for evaluation of classification 
results. Through stochastic simulation of a two-feature and two-class case, we demonstrate that the training-sample confusion matrix 
should replace the commonly adopted reference-sample confusion matrix for evaluation of LULC classification results. We then 
propose a bootstrap-simulation approach for establishing 95% confidence intervals of classifier global accuracies.  
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1. INTRODUCTION 

1.1 General Instructions 

When conducting a supervised LULC classification using 
remote sensing images, a set of multi-class ground-truth training 
samples is collected and used to establish classification rules 
and multi-class boundaries in the feature space. This is referred 
to as the training stage of LULC classification. In the validation 
stage, the classification rules established by the training data are 
applied to an independent set of multi-class ground-truth 
reference samples. Different measures of classification accuracy 
of the reference samples are then summarized in a confusion 
matrix (or error matrix) for assessment of the classification 
accuracies and performance of the LULC classification. A 
critical assumption of the classification accuracy analysis is that 
the confusion matrix is truly representative of the classification 
results of the entire study area. Class-specific producer’s and 
user’s accuracy summarized in a confusion matrix can be 
considered as sample accuracy and are only estimates of the 
true, yet unknown, global accuracy (or population accuracy) 
concerning the entire study area (Hay, 1988; Stehman and 
Czaplewski, 1998). These accuracies or errors are inherently 
associated with uncertainties due to variability or uncertainty in 
selection of training and reference samples (Weber and 
Langille, 2007). 
 
Many classification accuracy assessments were conducted using 
the same dataset as was used to train the classifier. Such 
training and validating on the same dataset could result in 
overestimation of classification accuracy (Congalton, 1991). In 
this paper, the confusion matrix established by using the same 
dataset for training and validation is referred to as the training-
sample confusion matrix and the confusion matrix established 
by using an independent dataset of reference samples is called 

the reference-sample confusion matrix. Although assessing the 
reference-sample confusion matrix has become a common 
practice for evaluation of LULC classification results, 
accuracies presented in the reference-sample confusion are 
dependent on the training samples through the classification 
rules established in the training stage of LULC classification. 
Thus, a thorough assessment of classification accuracies needs 
to take the uncertainty in training data selection into account. 
Therefore, the objectives of this study are two-fold: (1) to 
investigate the effect of training and reference data selection on 
classification accuracy and (2) to propose an approach for a 
quantitative assessment of the uncertainty in LULC 
classification results. 
 

2. THEORETICAL BASES 

The process of a supervised LULC classification is composed of 
a training stage and a performance evaluation (or validation) 
stage, and a resultant confusion matrix is used for accuracy 
assessment. For a better definition of the classification accuracy 
under different situations, we devise the following general 
expression of LULC classification accuracy. 
 
Let  represent the set of all pixels in the study area, i.e. the 
global dataset, and ST and SR, two independent datasets of 
known ground-truth LULC classes, represent the training 
sample and reference sample, respectively. We shall adopt the 
convention of  for a general expression of various 
measures of LULC classification accuracy. In this expression, 
S1 and S2 represents the training dataset and the validation 
dataset, respectively. Thus, the conventional class-specific 
accuracies in the training-sample confusion matrix and the 
reference-sample confusion matrix and two other global 
accuracy measures can be defined as shown in Table 1. 
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Table 1. Different measures of LULC classification accuracy.  

 
The training-sample-based global accuracy represents the 
classification accuracy of the thematic map. The training-sample 
accuracy, reference-sample accuracy and training-sample-based 
global accuracy all are dependent on the training dataset, and 
thus, conclusions of accuracy assessment using these measures 
are subject to the training data uncertainty. By contrast, the 
classifier global accuracy represents the accuracy achieved by 
using the population, i.e. the global dataset, to establish the 
classification rules, and thus only depends on the classifier 
adopted for LULC classification. Given a specific classifier, the 
classifier global accuracy (be the producer’s, user’s or the 
overall accuracy) has a unique and theoretical value. The global 
accuracy, either the training-sample-based global accuracy or 
the classifier global accuracy, is unknown and can only be 
estimated by using the confusion matrix of LULC classification 
results. 
 
Most studies assessed the accuracy and uncertainty of LULC 
classification results by using the reference-sample confusion 
matrix. Such practices aim to estimate the training-sample-
based global accuracy by using the reference-sample 
classification accuracy. However, the target accuracy, i.e. 

itself is dependent on the training data ST and thus 
conclusions drawn from such practices are inherently influenced 
by the selection of training samples. Even for a given training 
sample ST, the reference-sample accuracy  is still 
subject to reference-sample uncertainty. Therefore, we propose 
using the classifier global accuracy as the target accuracy since 
it is not subject to the training and reference data uncertainty 
and allows the users to compare the LULC classification 
performance of different classifiers. Evaluation of LULC 
classification accuracies can be conceived as a work of 
parameter estimation. For every evaluation approach, there exist 
a target accuracy, i.e. the parameter to be estimated, and an 
estimate of the target accuracy which is often derived from the 
LULC confusion matrix. 
 
Consider an example that k land-cover types ( ) 
are present in a study area. Suppose that m sets of sample data, 
say  are available. Each sample dataset is 
composed of pixels of known class-identities from the k land-
cover types. In an LULC classification, one of the m sample 
datasets, for example , is chosen as the training sample and 
the rest of m-1 datasets can be considered as reference samples. 
 
2.1 The reference-sample-based evaluation approach 

Upon completion of an LULC classification using a particular 
sample dataset, say , as the training sample, performance of 
the LULC classification can be evaluated by using any of the 
remaining m-1 reference sample sets ( . 

Let represent the producer’s accuracy of the i-th land-
cover class using  as the training sample and the j-th sample 
dataset  as the reference sample. We refer to  as the 
reference-sample producer’s accuracies. This evaluation 
approach aims to estimate the training-sample-based global 
accuracy, i.e. by using the reference-sample 
classification accuracy, i.e. as the estimator. 

Apparently, for a given set of training sample , the value of 
 varies with land-cover classes and reference samples, 

and the estimation can be expressed by 
 

 (1) 

 
Using a large number of reference samples, the uncertainty of 
the estimator can be evaluated. As the number of reference 
samples increases, we can expect the mean value of the 
reference-sample producer’s accuracy approaches to the true 
producer’s global accuracy achieved by using as the training 
sample, i.e., 
 

 

(2) 

 
In practice of remote sensing LULC classification, we usually 
have limited number of reference samples. Therefore, using 
only one or a few sets of reference samples, it is difficult to 
conduct a meaningful evaluation of the classification results. 
 
2.2 The training-sample-based evaluation approach 

This evaluation approach aims to estimate the classifier global 
accuracy, i.e. by using the training-sample accuracy, 
i.e. as the estimator, 
 

 (3) 
 
Suppose that all possible samples of a fixed sample size, i.e. the 
ensemble of samples, are available. Then, as the number of 
training samples increases, the mean of the training-sample 
accuracy approaches to the classifier global accuracy i.e., 
 

 
(4) 

 
The above equation indicates that the ensemble mean ( ) 

of the training-sample accuracy equals the classifier global 
accuracy. In real practice of LULC classification, we have only 
one set of training sample (m = 1) and thus the only training-
sample accuracy is used as an estimate of the classifier global 
accuracy and the training-sample-based evaluation is subject to 
training data uncertainty. 
 
2.3 The bootstrap-sample-based evaluation approach 

Given a training dataset , suppose that a large number (for 
example, M = 1000) of bootstrap samples, were 
generated from the training dataset. We then conduct LULC 
classification using each of these bootstrap samples as the 
training sample, and M sets of bootstrap-sample accuracy, i.e. 

, are obtained. Note 
that the subscript indicates that bootstrap samples are 
generated from the training dataset and the bootstrap-sample 
accuracy is dependent on the training dataset. Details of 
bootstrap resampling and its application for LULC classification 
can be found in Horowitz (2001). 
 
Let and respectively represent the 0.025 and 0.975 
sample quantiles of , then  
forms a 95% confidence interval of , i.e., 
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 (5) 
 
It is worthy to note that, with increasing number of bootstrap 
samples, the mean of bootstrap-sample accuracy approaches to 
the training-sample accuracy, i.e., 
 

 

(6) 

 
Combining Equations (4) and (6), it yields 
 

 

(7) 

 
If only one set of training sample is available (m = 1), then the 
mean and sample quantile range  of the bootstrap-
sample accuracy are a point estimate and 95% confidence 
interval of the classifier global accuracy, respectively. 
 

3. STOCHASTIC SIMULATION OF LULC 
CLASSIFICATION 

We consider a special case of LULC classification with two 
land-cover classes (C1 and C2) and two classification features 
(X1 and X2). Let the two classification features form a bivariate 
Gaussian distribution and the mean vector, covariance matrix of 
classification features and a priori probabilities of C1 and C2 are 
listed in Table 2. The two classification features are negatively 
correlated ( ) for C1 and positively correlated 
( ) for C2. 
 

 
Table 2. Parameters of the bivariate Gaussian distribution.  

 
For our simulation, the Bayes classification method which 
considers the a priori probabilities of individual LULC classes 
was chosen as the classifier. For the above setting, the classifier 
global accuracies, i.e., , are shown in Table 3. 
 

 
Table 3. Classifier global accuracies by the Bayes classifier.  

 
The objective of our simulation is to demonstrate that a 95% 
confidence interval of the classifier global accuracy can be 
established by using bootstrap samples. We generated a large 
number (1000) of training datasets from the two-class bivariate 
Gaussian distribution. Then, for each training dataset, 1000 sets 
of bootstrap samples were generated and used to establish a 
confidence interval of the classifier global accuracy. Finally, we 
evaluated the proportion of these confidence intervals covering 
the classifier global accuracy. 
 

4. RESULTS AND DISCUSSION 

4.1 Two-class, two-feature case 

For convenience of explanation, abbreviations PA, UA and OA 
represent the producer’s, user’s, and overall accuracies, 
respectively. A number affixed to PA and UA indicates the 
Land-cover class. For example, PA1 represents the producer’s 
accuracy of C1. 
 
Figure 1 demonstrates the 95% bootstrap confidence intervals 
and the mean bootstrap-sample accuracies for 100 (301 – 400) 
sets of training samples. For every training sample set, the mean 
of 1000 bootstrap-sample accuracies falls very close to the 
training-sample accuracy. The covering rates of classifier-
global-accuracy were 0.977, 0.945, 0.947, 0.977, and 0.953 for 
PA1, PA2, UA1, UA2, and OA, respectively. These covering 
rates are slightly higher than (for PA1 and UA2) or nearly equal 
to 0.95 (for PA2, UA1, and OA), indicating the practical 
applicability of the bootstrap confidence interval proposed in 
this study. 
 

 

 

 
 

Figure 1. Illustration of 95% bootstrap confidence intervals for 
the 2-class, 2-feature case. 

 
We also investigated how the number of bootstrap samples 
affects the classifier-global-accuracy covering rates of the 95% 
bootstrap confidence interval. Table 4 shows that covering rates 
of all accuracy measures become more stabilized for 100 or 
more bootstrap samples. Thus, we recommend using at least 
100 bootstrap samples to construct the 95% bootstrap 
confidence intervals of different classifier global accuracies. 
 
4.2 Four-class, three-feature case 

In order to demonstrate the capability of the proposed 
bootstrap-sample-based evaluation approach for more 
complicated LULC classification applications, we conducted 
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similar stochastic simulation for a 4-class, 3-feature LULC 
classification case. We assume the three classification features 
of individual land-cover classes form a trivariate Gaussian 
distribution. The mean vector, covariance matrix of 
classification features of individual land-cover classes are listed 
in Table 5. The a priori probabilities of individual land-cover 
classes (Class 1 through 4) are 0.2, 0.4, 0.25 and 0.15, 
respectively. An exemplar demonstration of training samples is 
shown in Figure 2. 
 

 
Table 4. Classifier-global-accuracy covering rates of 95% 
bootstrap-sample confidence intervals with respect to different 
number of bootstrap samples. 
 

Table 5. Parameters of the trivariate Gaussian distribution of the 
4-class, 3-feature case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. An exemplar demonstration of training data for the 4-
class, 3-feature case.  
 
The 95% bootstrap confidence intervals and the mean 
bootstrap-sample accuracies for 100 (301 – 400) sets of training 

samples for the 4-class 3-feature case is shown in Figure 3. For 
every training sample set, the mean of 1000 bootstrap-sample 
accuracies falls very close to the training-sample accuracy. The 
covering rates of classifier-global-accuracy were 0.96, 0.976, 
0.949, 0.955, 0.958, 0.955, 0.963, 0.958 and 0.936 for PA1 to 
PA4, UA1 to UA4, and OA, respectively.  
 
 

5. SUMMARY AND CONCLUSIONS 

In This study we present new concepts of LULC classification 
accuracies, namely the training-sample-based global accuracy 
and the classifier global accuracy, and a general expression of 
different measures of classification accuracy in terms of the 
sample dataset for classifier training and the sample dataset for 
evaluation of classification results. We also conducted 
stochastic simulations for a two-feature two-class LULC 
classification case to demonstrate the practical applicability of 
the proposed bootstrap simulation approach for establishing 
95% confidence intervals of classifier global accuracies. The 
conclusions are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Illustration of 95% bootstrap confidence intervals for 
the 4-class, 3-feature case (continued). 
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Figure 3. Illustration of 95% bootstrap confidence intervals for 
the 4-class, 3-feature case. 
 
(1)  The commonly adopted reference-sample classification 

accuracies are subject to uncertainties in the training and 
reference data. At its best, the reference-sample accuracy 
can only provide a good estimate of the global accuracy 
achieved by a specific training sample. It does not provide 
information about the global accuracy that can be achieved 
the classifier.  

(2)  Through rigorous stochastic simulations, we demonstrated 
the practical applicability of the proposed bootstrap 
confidence interval. We recommend using at least 100 
bootstrap samples to construct the 95% bootstrap 
confidence intervals of different classifier global accuracies. 
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