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ABSTRACT: 

 

Considering the critical role of trajectory data in Big Data era for dynamic geographical processes, human behaviour analysis and 

meteorological prediction, trajectory clustering has attracted growing attention. Many literatures have discussed the spatiot emporal 

clustering method of simple trajectories (i.e., has no branches, e.g. vehicle trajectories), yet there are few researches for clustering 

complex trajectories (i.e., has at least one split and/or merger and/or split -merger branch, e.g. ocean eddy trajectories, rainstorm 

trajectories). For addressing this issue, we propose a Process-Oriented Spatiotemporal Clustering Method (POSCM) for clustering 

complex trajectory data. The POSCM includes three parts: the first uses the semantic of process-sequence-state to represent the 

complex trajectories; the second proposes a Hierarchical Similarity Measurement Method (HSMM) to get the similarity between any 

two complex trajectories; in the last step, the complex trajectories clustering pattern is extracted through density-based clustering 

algorithm. Experiments on simulated trajectories are used to evaluate the POSCM and demonstrate the advantage by comparing 

against that of the VF2 algorithm. The POSCM is applied to the sea surface temperature abnormal variations trajectories from 

January 1950 to December 2017 in the Pacific Ocean. As shown in this case study, some new mined spatiotemporal patterns can 

provide new references for understanding the behaviours of marine abnormal variations under the background of the global change. 
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1. INTRODUCTION 

Trajectories are a sequence recording the location and time of a 

moving object. Advanced data acquisition technologies provide a 

foundation for obtaining trajectories of different moving objects. 

In order to discover hidden and unknown knowledge from 

massive trajectory data, data mining is needed as the analysis 

method. As an important component of data mining tools, 

clustering analysis aims to find clusters of the same properties 

(Jain and Dubes, 1988). Interesting associations between global 

distribution patterns and data attributes can be found from the 

understanding of trajectory clusters (Hong et.al., 2017; Zheng 

et.al., 2018). 

 

Most clustering studies focus on the trajectories which the 

spatial position and thematic attributes of objects are constantly 

changing, but its structure does not change during its lifespan, 

e.g., vehicle trajectories, this study calls them simple trajectories. 

In contrast, there is another kind of trajectories in the real world, 

which are produced by objects or phenomena with splitting, 

merging or splitting-merging behaviours during its lifespan (as 

shown in Figure 1), e.g., ocean eddy trajectories (Nan et al., 

2011), rainstorm trajectories (Liu et al., 2014), this study calls 

them complex trajectories. However, the research on clustering 

of complex trajectories is relatively few, the reasons are as 

follows: (1) the traditional representation model has difficulty to 

represent complex trajectories with split and/or merger and/or 

split-merger branches; (2) the similarity measurement 

approaches of simple trajectories no longer applies for 

measuring the structural characteristics of complex trajectories. 

 

For this issue, this paper presents a Process-Oriented 

Spatiotemporal Clustering Method (POSCM), which consists 

of new representation method and a new similarity measuring 

approach for complex trajectories, for clustering complex 

trajectories. The simulated complex trajectories dataset and the 

sea surface temperature abnormal variations trajectories from 

January 1950 to December 2017 in the Pacific Ocean are used to 

evaluate POSCM.  
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Figure 1. An example of complex trajectory. 
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2. RELATED WORKS 

2.1 Representation of trajectories 

A compact and robust representation of the trajectories is 

important for mining the spatiotemporal movement patterns 

(Faisal et al., 2007). The conventional representation models for 

simple trajectories can be divided into three categories: vector, 

probabilistic distribution, and graph. The vector representation 

model is most commonly used, which is a series of points in a 

chronological order (Pakhira et al., 2004; Nanni and Pedreschi, 

2007). The second representation model treats trajectories as 

samples of a probabilistic distribution, which can use 

distribution matching method to get the similarity  (Li et al., 

2006). The trajectories are represented as G (N, E) based on 

graph theory, where N represents a trajectory recording point, 

and E represents relationship edge between trajectory recording 

points (Mahrsi and Rossi, 2013; Wang et al., 2018). Obviously, 

the former two models are difficult to represent complex 

trajectories. The graph structure can well represent complex 

trajectories (Wang et al., 2018), but each trajectory point is 

contained in the graph, which is complicated and unnecessary 

for trajectory similarity measuring. 

 

2.2 Similarity measurement for trajectories clustering 

For measuring the similarity of the simple trajectories, there are 

many methods which consists of full-interval similarity measure, 

subinterval similarity measure, and single point similarity 

measure. The common measurements of the first kind methods 

are the Euclidean distance (Pakhira et al., 2004; Nanni and 

Pedreschi, 2007), the Hausdorff distance (Chen et al., 2011; Liu 

et al., 2014), Dynamic Time Warping (DTW) distance (Zhu and 

Zhu, 2017), or Minimum Boundary Rectangle (MBR) distance 

(Anagnostopoulos et al., 2006). The edit distance (Pelekis et al., 

2012) and Longest Common Subsequence (LCSS) distance (Xie 

et al., 2017) are common measurements of the second methods. 

And the Fréchet distance (Brakatsoulas et al., 2005) is the single 

point similarity measurement. 

 

It is difficult to apply these methods directly to the similarity 

measurement of complex trajectories. On the basis of graph 

matching theory, VF2 (Cordella et al. 2004) and graph edit 

distance (Riesen and Bunke, 2009) which measure the similarity 

between graphs, provided a new perspective to measure the 

similarity between complex trajectories. Wang et al (2018) have 

proposed a method for measuring topological structure 

similarity between complex trajectories inspired by VF2. 

However, there is still a lack of comprehensive measurement 

methods to measure the time, space, thematic attributes and 

structural features of complex trajectories. 

 

3. METHODOLOGY 

For mining cluster pattern of complex trajectories, we propose a 

Process-Oriented Spatiotemporal Clustering Method (POSCM), 

which includes the representation of complex trajectories, the 

construction of similarity measurement method, and clustering 

pattern extraction. Figure 2 shows the overall framework of 

POSCM. The following sections give a detailed description of 

key parts of the POSCM. 
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Figure 2. The overall framework of the POSCM . 

 

3.1 Process-oriented representation of complex 

trajectories  

Inspired by a geographical process semantics (Yuan 2001; Xue 

et al., 2012; Yi et al., 2014), we proposed a new representation 

method for complex trajectories, i.e., the Process-oriented 

representation. According to the “process-sequence-state” 

semantic, the complex trajectories are abstracted into a process 

with several sequence trajectories i.e., Tra (S1, S2, …Sn). And 

each sequence trajectory consists of a start node and an end 

node i.e., Si (SN, EN), where the start node is the start point, 

split point, merger point, or split-merger point of trajectory; the 

end node is the end point, split point, merger point, or split-

merger point of trajectory. The start/end nodes (called trajectory 

node) are the basic element which depicts the spatial, temporal, 

and structure characteristics of the trajectory i.e., SN/EN (x, y, T, 

nodetype, attribute), where the nodetype has five types: 

Production, Termination, Merging, Splitting, and Merging-

splitting. 

 

We use the complex trajectory shown in Figure 1 to illustrate 

the aforementioned representation method. Suppose the 

complex trajectory is Tra, where p i is the trajectory point in T i, 

and p1 and p9, p20 are the start points and end point, 

respectively. Based on the evolution characteristic of Tra, the 

sequence trajectories of Tra are as follows: S1(p1, p4), S2(p4, p13), 

S3(p13, p14), S4(p13, p18), S5(p14, p18), S6(p18, p20). Taking p4 as an 

example, the start/end nodes of each sequence trajectory can be 

represented as: p4(x4, y4, T4, Splitting). Therefore, the complex 

trajectory Tra can be represented as Tra (S1, S2, S3, S4, S5, S6), 
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and the spatiotemporal and structure features are implicit in the 

start/end nodes of sequential trajectories. 

 

3.2 Hierarchical similarity measurement method 

Based on the new representation of complex trajectories, a 

Hierarchical Similarity Measurement Method (HSMM) was 

developed for measuring the similarity of spatiotemporal 

structure and thematic characteristics between complex 

trajectories. The HSMM uses a hierarchical thought “similarity 

of trajectory node →  similarity of sequence trajectories → 

similarity of complex trajectory” to get the similarity matrix 

between any two complex trajectories.  

 

The first level is the similarity  measurement for trajectory node 

(i.e., the start/end node as mentioned above). Euclidean distance 

is used to calculate spatial proximity based on spatial attribute 

(x, y). Considering the periodicity and temporal multiple scale 

of phenomena, the temporal similarity measurement must 

remove the influence of periodicity  on the same time scale. The 

difference of thematic attributes is directly measured according 

to (attributes). 

 

The second level of HSMM is for the sequence trajectories, 

which composes the basic spatial structure of complex 

trajectories. Each sequence trajectory consists of a start node 

and an end node, which is similar to Origin-Destination (OD) 

flow data (Zhu et al., 2018; Song et al., 2018). Based on the first 

level of HSMM, two sequence trajectories are more 

spatiotemporally similar if the spatial distance between their 

start nodes and their end nodes are smaller, and the periods 

during which they occur overlap more. If the nodetype of start 

nodes in two sequence trajectories is the same, and so as the end 

nodes, the spatial structure of these two sequence trajectories is 

similar. 

 

The last level of HSMM measures the similarity between 

complex trajectories. Based on the similar pairs of sequence 

trajectories, we find the connected similarity structure, where 

each sequence trajectory can connect to the others. The 

maximum number of the sequence trajectories in the connected 

similarity structures is denoted by MaxNum, the similarity of 

two complex trajectories Tram (the number of sequence 

trajectories is M) and Tran (the number of sequence trajectories 

is N) can be defined as follows: 

 

Similarity (Tram, Tran) = MaxNum / (M + N - MaxNum)    (1) 

 

3.3 Density-based clustering for pattern extraction 

The density-based clustering algorithms, e.g., the DBSCAN, are 

widely used to extract trajectory clusters (Nanni and Pedreschi, 

2006; Zhu and Guo 2014). The concepts of DBSCAN (i.e., core 

trajectory, density, reachability, etc) for complex trajectories are 

redefined and the two critical parameters: similarity threshold ε 

and density core threshold Minpt, are determined according to 

Nanni and Pedreschi (2006).  

 

Based on the n × n similarity matrix from HSMM (n is the 

number of complex trajectories), ε and Minpt, the clustering 

cores and the density of each trajectory are obtained. We can 

extract clustering pattern of complex trajectories by connecting 

the clustering cores and their neighbours according to their 

density connectivity . 

 

4. RESULTS AND DISCUSSION 

4.1 Experiments on simulated datasets 

For evaluating POSCM and demonstrating the advantage by 

comparing against that of the VF2 algorithm, we use simulated 

complex trajectories which contains noise (shown in Figure 3) 

for clustering experiment. VF2 is a graph-match algorithm by 

examining graph and subgraph isomorphism (Cordella et al. 

2004). The clustering step of VF2 algorithm is implemented in 

the same steps as POSCM.  The parameters of the two 

algorithms are the same. 

 

 
Figure 3. Simulated complex trajectories. 

 

     

 

Figure 4. Clustering results based on structural similarity .  
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Figure 4 shows the clustering results of the two methods based 

on structural similarity. As shown in Figure 4, POSCM has 

better clustering performance in mining clustering patterns of 

complex trajectories with similar structures than VF2 algorithm, 

which is because that VF2 failed to detect the “partial 

isomorphism” (Wang et.al., 2018), and it requires that the in/out 

degree of two matching nodes must be consistent. Because of 

the comprehensive consideration of multi-attribute similarity in 

HSMM, we can also get clustering results of POSCM based on 

structural and spatial similarity (shown in the Figure 5). 

 

 

Figure 5. Clustering results of POSCM based on structural and 

spatial similarity.  

 

4.2 Case study of SST abnormal variations trajectories  

The Pacific Ocean from 100°E to 60°W and 50°S to 50°N is 

considered as a research area, and the Sea Surface Temperature 

(SST) Abnormal variations (SSTA) trajectories from January 

1950 to December 2017 are obtained by the centroid movement 

of SST abnormal variation objects, which is explored using the 

dual-constraint spatiotemporal clustering approach (Liu et al., 

2018). The purpose of the case study is conducted to illustrate 

applicability of POSCM to complex trajectories, therefore, only 

the SSTA complex trajectories are as the input data. 

 

Figure 6 shows two clusters (named as Cluster 1 and Cluster 2) 

of SSTA complex trajectories based on structural similarity . 

Table 1 and Table 2 show the detailed information of the two 

clusters, respectively. The El Nino/ La Nina events are defined 

by the method in Mcphaden et.al (2006), and the main structure 

of Cluster 1/2 is the maximum similarity structure of all 

trajectories in it. Both clusters are mainly located in the eastern 

equatorial Pacific Ocean where is the sensitive region to El Nino 

and La Nina event. As shown in the Table 1/2, the lifespan of 

most trajectories is in the period of El Nino/ La Nina event, and 

the thematic attribute (above or below the mean of SST) of these 

trajectories in Cluster 1/2 are coincident. The main structure of 

Cluster 1/2 shows that the SSTAs have the behaviour of merging 

first and then splitting in this area during some El Nino events, 

and have two merging behaviours in this area during some La 

Nina events. 

 

 
(a) 

 
(b) 

Figure 6. Clustering results of SSTA complex trajectories 

through POSCM. 

 

 

Trajectories 
in Cluster 1 

Attribute of trajectories 

Main 

structure of 

Cluster 1 

 
lifespan 

El Nino  
event 

above or 
below the 

mean 

T
im

e

 

158 
1958.01-

1958.08 
√ above 

242 
1965.02-

1966.06 
√ above 

326 
1972.03-

1973.02 
√ above 

424 
1982.04-

1983.12 
√ above 

541 
1991.06-

1992.07 
√ above 

599 
1997.02-

1999.01 
√ above 

740 
2005.09-

2006.05 
× above 

800 
2009.12-

2010.11 
√ above 

846 
2013.01-

2013.05 
× above 

Table 1. Related information of Cluster 1.  
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Trajectories 
in Cluster 2 

Attribute of trajectories 

Main 

structure of 

Cluster 2 

 
lifespan 

La Nina 
event 

above or 
below the 

mean 

T
im

e

 

25 
1950.11-

1952.03 
√ below 

126 
1956.06-

1957.12 
√ below 

559 
1993.05-

1993.11 
× below 

664 
1998.07-

2000.06 
√ below 

759 
2007.07-

2008.06 
√ below 

806 
2010.06-

2012.03 
√ below 

808 
2005.09-

2006.05 
√ below 

Table 2. Related information of Cluster 2.  

 

5. CONCLUSION 

In this paper, a Process-Oriented Spatiotemporal Clustering 

Method (POSCM) was proposed to extract clustering pattern 

of complex trajectories, which have at least one split and/or 

merger and/or split-merger branch during their lifetime. POSCM 

mainly focuses on solving the issues of representation and 

similarity measurement for complex trajectories clustering. For 

the former, POSCM presented a process-oriented 

representation method based on the “process-sequence-state” 

semantic, which is able to simplify the complex trajectories and 

ensure structure of the complex trajectories at the same time. 

Based on this representation of complex trajectories, POSCM 

developed a Hierarchical Similarity Measurement Method 

(HSMM) for measuring the similarity of any two complex 

trajectories in space, time, thematic attribute, and structure. And 

in the final step, POSCM clustering the complex trajectories 

through classical density-based clustering algorithm. 

 

We used synthetic complex trajectories to evaluate POSCM and 

compare its performance against that of the VF2. From the 

results, POSCM is more suitable for measuring structural 

similarity of complex trajectories than VF2, furthermore, the 

HSMM in POSCM makes it possible for measuring 

comprehensive similarity of complex trajectories in space, time, 

thematic attribute, or structure. 

 

Using SST abnormal variations trajectories data in the Pacific 

Ocean as the case study, the POSCM explored interesting 

patterns from the data. From the clustering results, we can find 

the similar behaviours of SST abnormal variations in the 

sensitive regions during some El Nino/ La Nina events, which 

may provide an important reference for research on the mutual 

response and driving mechanisms behind between global climate 

change and marine abnormal variations. 

 

In conclusion, the POSCM can extract clustering patterns of 

complex trajectories based on multi-attribute similarity , which 

can contribute to a better understanding for the change 

behaviours of objects or phenomena. The future work will focus 

on further optimization of the POSCM, and the further analysis 

for the clustering pattern of SST abnormal variations trajectories. 
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