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ABSTRACT: 

Healthy inland freshwater sources, such as lakes, reservoirs, rivers, and streams, play crucial roles in providing numerous benefits to 
surrounding societies. However, these inland water bodies have been severely polluted by human activities. Therefore, long-term 
monitoring and real-time measurements of water quality are essential to identify the changes of water quality for unexpected 
environmental incidents avoidance. The success of satellite-based water quality studies relies on three key components: precise 
atmospheric correction method, optimization algorithm, and regression model. Previous studies integrated various algorithms and 
regression models, including (semi-) empirical or (semi-) analytical algorithms, and (non-) linear regression models, to obtain satisfactory 
results. Nevertheless, the selection of appropriate algorithm is complex and challenging because of the fact that the changes in chemical 
and physical properties of water can lead to different method determination. To alleviate the aforementioned difficulties, this study 
proposed a potential integration which comprises an optimization method for efficient water-quality model selection, ordinary least 
squares regression, and an accurately atmospheric corrected dataset. Prime focus of this study is water-quality model selection which 
optimizes an objective function that aims to maximize prediction accuracy of regression models. According to the experiments, the 
performance of the selected water-quality model using proposed procedures, dominated that of the existing algorithms in terms of 
root-mean-square error (RMSE), the Pearson correlation coefficient (r), and slope of the regressed line (m) between measured and 
predicted chlorophyll-a. 

1. INTRODUCTION

Healthy inland freshwater sources, including lakes, reservoirs, 
rivers and streams, play a crucial role in providing and preserving 
benefits for the biodiversity and habitat of every living species in 
surrounding societies. In past few decades, driven by increasing 
population, global warming, urbanization, modernization and 
other factors, the water quality of lakes have fluctuated frequently 
and jeopardized our health (Wu et al., 2014). Long-term 
monitoring and real-time measurements of water quality, which 
are necessarily demands to provide immediate and proper 
treatments, aiming to identify significant changes of water sources 
for the avoidance of the unexpected environmental incidents 
(United States Environmental Protection Agency [US-EPA], 
2016).  

There are various domain experts devoting their efforts to aquatic 
environmental studies by collecting, analyzing water samples in 
the professional laboratory. The limitation of conventional 
approach is that the water quality could be represented only at 
sampling sites, but for extensive water bodies, the spatial-temporal 
synoptic view, which is important for long-term monitoring and 
managing, is impossibly obtained.  

Over past decades, numerous previous studies have integrated 
various algorithms and regression models to obtain satisfactory 
results. Nevertheless, the selection of appropriate algorithm is 
complex and challenging because of the fact that the changes in 
chemical and physical properties of water can lead to different 
method determination 

To alleviate the aforementioned difficulties, this study proposed a 
potential integration which comprises an optimization method for 
efficient water-quality model selection, ordinary least squares 
regression, and an accurately atmospheric corrected dataset. 

2. STUDY AREA

Locating at approximately 60 km northeast of Tokyo, Lake 
Kasumigaura  is the second largest lake with surface area of 160 
km2 in Japan. There is seasonal or year-to-year fluctuation in 
water level. The average and maximum depths are about 4 meters 
and 7 meters, respectively. In Japan, CGER (2010) indicated that 
the average Chlorophyll-a (Chla) in Kasumigaura Lake is declined 
from 87 to 61 mg m-3.  

Figure 1: Study area 
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3. MATERIALS 

The research material consisted of a datasets including in-situ 
measurements of Chla concentration as well as satellite imageries. 
Chla samples were collected during a field dedicated campaigns 
by University of Tsukuba and the National Institute for 
Environmental Studies (NIES) (20 samples on 18 May 2010). 
Beside the ground truth data on Chla, the European Space Agency 
(ESA) supplied the ENVISAT-MERIS satellite imageries, which 
were captured around water sampling time. During field 
campaigns and image acquisition periods, large amount of 
precipitation lead to higher water-level at Lake Kasumigaura. 

3.1. In-situ Chorophyll-a Concentration 

To integrate in-situ Chla measurements and remote sensing 
reflectance, denoted by Rrs(λ), during feature selection as well as 
model calibration and validation stage, a collection of 20 water 
samples is collected to coincide with the acquisition time of 
satellite imagery. The sample locations are averagely distributed 
along the Lake Kasumigaura during field campaign on 18 May 
2010.  
 
The majority of in-situ Chla measurements are reported at very 
high concentrations, exceed 35 mg m-3. The possible reason in the 
high Chla retrievals due to the water environments are getting 
warmer in the summer that lead to increase algal growth rates. 
Also, a significant amount of precipitation brings more nutrients 
runoff into the lake, feeding algal bloom . We also observed from 
the descriptive statistics that the Chla ranges are widely variation, 
46.10 mg m-3 in 2010. 
 
3.2. Remotely Sensed Data  
 
In this study, the MERIS imagery with 300-meters spatial 
resolution were utilized to deliver the temporal-spatial data over 
Lake Kasumigaura. Despite ENVISAT’s MERIS lost 
communication in 2012, the potential capability of collected 
dataset for extensive water quality has still experimented in recent 
studies as its unique bands, for instance, 510 nm, 665 nm, 681.25 
nm, 708.75 nm and 753.75 nm bands which are not available in 
operating sensors (Zhang et al., 2019; Attila et al., 2018; Smith et 
al., 2018). By continuing to use the aforementioned bands, since 
2016, a new sensor, which is developed based on MERIS, named 
Ocean and Land Color Instrument (OLCI), has been successfully 
placed in orbit, transmitting the 21 reflectance bands of the ocean 
and land, in which 15 bands are exactly what have been 
instrumented in ENVISAT-MERIS. 

In the field of satellite-based water quality monitoring, an accurate 
atmospheric correction is an essential prerequisite for potentially 
improving the prediction of some key parameters concentrations 
in water bodies. Implication for future use as well as the 
limitations of atmospheric correction methods on Sentinel-3 
datasets, we made use of MERIS bands which were precisely 
corrected using New- the standard Gordon and Wang algorithm 
with an iterative process and a bio-optical model (N-GWI) in this 
study (Jealani et al., 2014). 
 

Jealani et al. (2014) proved that N-GWI outperformed the other 
four existing AC algorithms for turbid waters, including GWI 
(Stumpf et al., 2003; Bailey et al., 2010), Management Unit of the 
North Sea Mathematical Models (MUMM) (Li, 2003), Case-2 
Water Processor (C2WP); (Doerffer and Schiller, 2007), and Self-
Contained Atmospheric Parameters Estimation (SCAPE-M) 
(Guanter et al., 2007; Guanter et al., 2010). 
 
 

4. METHODOLOGY 

This part concentrates on application of an optimization method, 
named Neighborhood Component Feature Selection (NCFS) 
(Yang et al., 2012), for alleviating the difficulties in model 
selection. Feature selection is known as an efficient technique for 
selecting a small subset of significant features from a given high-
dimensional features dataset. On the concept of the study, a 
feature is expressed as an algorithm, which is possibly created 
based on the optimization architecture of the existing algorithm. 
The following subsections have been prepared for further 
discussions about definition of feature, the principle of NCFS and 
the accuracy assessment. 
 
4.1. Generation of Feature Space  
 
In this study, feature space refers to the m-dimensional dataset, of 
which a dimension corresponds to a variable that has been created 
as following steps. Firstly, considering the optimization 
architecture of the existing (semi-)empirical algorithms, included 
the original three-band models as Equation (1) (cite). Then, 
integrating multiple bands into architecture of the algorithm below 
to create a new variable. Due to the applied method named: 
“Neighborhood Component Feature Selection”, hence we consider 
all variable as features. 
 
  [Rrs (λ1 )-1 - Rrs (λ2 )-1]. Rrs (λ3 )  (1) 

4.2. Standardization 
 
Since the features vector xi corresponding to the response yi is 
created in different scales, the standardization plays an important 
pre-processing step to make the feature weights meaningful and 
comparable after feature selection, and  also to make the 
optimization solver coverage faster than that without the 
standardization process. In this study, the feature space vector xi is 
standardized to have zero mean and unit standard deviation. 
 
4.2. Neighborhood Component Feature Selection (NCFS) 
 
Given a training dataset T={(x1,y1 ), (xi,yi ), (xn,yn )}, where xi 
represents a m-dimension features vector, and yi  R is the 
corresponding response of xi; and n denotes the number of 
training samples. 

The NCFS method consists of three main steps. The first step 
begins with the standardization of the feature vectors xi, which are 
created in different scales. The second step adopts leave-one-out 
(LOO) cross-validation to estimate the goodness of a defined loss 
function for sample i in the training dataset T. Afterwards, the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1249-2019 | © Authors 2019. CC BY 4.0 License.

 
1250



third step minimizes the summarized loss function to determine 
the optimal weights for every features. 

Only directions along which the parameters contribute 
significantly to reducing the objective function are preserved 
relatively intact. In directions that do not contribute to reducing 
the objective function, components of the weight vector 
corresponding to such unimportant directions are decayed away 
through the use of the regularization throughout training. 

 

Figure 2: Minimizing the regularized loss function 

4.3. Accuracy Assessment 
 
There are three main criteria which were used in accuracy 
assessment, included root-mean-square-error (RMSE), Pearson’s 
correlation coefficient (r) between predicted and measured Chla, 
slope (m) of the linear regression line between predicted and 
measured Chla also be calculated to visualize how close to 1:1 
these regressed lines were. 

RMSE = ,  

, 

,  

where Chlapred,i, Chlameas,i were predicted and measured Chla of 
sample i; ,  were average predicted Chla  and  
average measured Chla of all validation samples, respectively; N 
indicated number of validation samples.   
 

5. RESULTS AND DISCUSSIONS 

5.1.  NCFS Features Selection  
 
The experimental flowchart has been implemented with 
consideration of the first 10 bands in MERIS images, following 

the steps: 1) a set of five-band groups is determined, each group 
consists of four spectral bands, of which have frequently 
dominated the previous studies, specifying at wavelengths of B7 
(665),  B8 (681), B9 (709) and B10 (754), then, in sequential order, 
the fifth band  from the remaining six bands is added to a group of 
four bands above; 2) a dataset of non-correlated 30 dimensions is 
created, which are based on the architecture of the formulas Eq. 
(1). After processing, the results pointed out the entire algorithms 
with its corresponding weights, as well as the errors of the 
regularized loss function during iterative runs. 

Band Wavelength centre (nm) Band notation 
1 412.5  
2 442.5  
3 490.0  
4 510.0  
5 560.0  
6 620.0  
7 665.0  
8 681.25  
9 708.75  
10 753.75  

Table 1. Band notation of the first 10 MERIS spectral bands 

 
5.2. Algorithm accuracy assessment 
 
In order to generate the predictive models from those 
aforementioned algorithms, the statistical calibration procedure, 
named the Ordinary least square regression (OLS) which is 
utilized. The coefficients of calibrated models along with its 
corresponding predictors, such as intercept a0; slope a1, a2; the 
coefficient of determination (R2) are reported in Table 3. 

Model 
name 

Predictors 
X1 X2 

Mdl1 [  - 
].  

[  - 
].  

Mdl2 [  - 
].  

[  - 
].  

Mdl3 [  - 
].  ** 

Mdl4 [  - 
].  ** 

3BG08 
(Gitelson et 
al., 2008) 

[  - 
].  ** 

** Not available 
Table 2. The predictor(s) of models. 

 
Model 
name a0 a1 a2 R2 

Mdl1 -9.5 65 174 0.91 
Mdl2 -8.9 1.7 198 0.91 
Mdl3 108 -295 ** 0.94 
Mdl4 48.6 -247.8 ** 0.96 

3BG08 24.91 115.14 ** 0.44 
** Not available  

Table 3. Coefficients derived from calibration using OLS method. 
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Models RMSE  
(mg m-3) r m 

Mdl1 6.3 0.91 1.015 
Mdl2 6.4 0.91 1.021 
Mdl3 6.4 0.91 1.031 
Mdl4 4.6 0.94 1.014 

3BG08 6.2 0.90 0.623 
Table 4: Comparison of RMSE, slope (m) and correlation 

coeficient (r) and with other studies 
 

The predictive capability of all calibrated models above were 
evaluated on an independent validation dataset consisting of 
remaining 10 samples in 2010. In order to identify the best fitted 
model, the comparison was concentrated on four criteria, such as 
root-mean-square-error (RMSE), the Pearson’s correlation 
coefficient r and the slope m of the linear correlation line between 
measured and predicted Chla. 
 
According to the Table 4, we clearly obtained that the algorithms 
which has selected from NCFS methods mostly provided higher 
accuracy to than the existing widely applied (semi-) empirical 
algorithm from previous studies. The performance of Mdl4 has 
reached the RMSE of 4.6. Moreover, the remaining criterias, such 
as Pearson’ correlation coefficient (r) and slope (m) of the 
regressed line between predicted and the measured Chla, which 
also proved the outstanding predictive capability of Mdl4. The 
regressed line is very close to the line 1:1 when the slope is of 
1.014, the coefficient (r) is of 0.94. 
 

 
Figure 3. The comparison between measured and predicted Chla 

in proposed model (left) and reference model – 3BG08 (right) 
 

 
6. CONCLUSIONS 

 
From previous studies, NCFS has been proved as an effective and 
efficient method to select the significant features in many 
classification applications. Throughout this study, NCFS has been 
firstly experimented in regression, applied in the field of satellite-
based water quality monitoring, it has showed the capability of 
selecting important features, which is express as algorithms to 
make accurate predictive models for estimation of Chla 
concentration.In case the widely applied algorithms from previous 
studie, such as 3BG08 that could not well perform in the present 
study area, NCFS could be used as an alternative approach to 
create new algorithms, aims to better fit with the study area. The 
selected algorithm, the predictive model in this study need to be 
further validated in different seasons, in this study, it has 
successful predicted the Chla concentration on unseen data of 
2010. The selected algorithm has been found out using ENVISAT-
MERIS data, which has stopped since 2012. However, Sentinel 3-
MSI has instrumented the similar sensor to MERIS, operating in 

orbit, the selected algorithm could be further applied using 
Sentinel-3 remotely sensed data. 
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