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ABSTRACT: 
 
Algorithms to detect, describe, and match common features in image sets are expanding to new worlds with the integration of the 
OpenCV feature matching framework in a popular mapping tool for planetary images (ISIS3). These algorithms provide a new 
approach to register images and build image-based control networks. However, the natural landscape of the Moon and other planetary 
bodies pose new challenges such as numerous features that appear similar (i.e., impact craters and boulders). In addition, planetary 
image sets vary in scale, orientation, and noise properties, especially when conducting cross instrument and cross mission comparisons. 
This study assesses a collection of common feature detector and descriptor algorithms to examine how they adapt to these challenges. 
With our analysis, we did not identify an ideal detector and descriptor combination that exists for our diverse lunar dataset. However, 
we did identify where particular algorithms succeed and identify their shortcomings. By knowing these capabilities, users can identify 
the proper set of algorithms to apply to an image set given the presence of noise and variations to scale and orientation.          
 
 
 

1. INTRODUCTION 

1.1 Background 

The terrestrial remote sensing community adopted feature 
detection, description, and matching techniques from the 
machine vision community to identify and compare similar 
landforms and other distinctive attributes in vast image sets. 
Some applications of these tools include image registration, 
object localization, and 3D terrain reconstruction. With the recent 
addition of feature detection and matching routines in Integrated 
Software for Imagers and Spectrometers 3 (ISIS3; Anderson et 
al. 2004), a popular image processing tool for remotely sensed 
observations from planetary missions, feature-based matching is 
expanding to new worlds. However, these new planetary bodies 
pose challenges for some feature detection and matching routines 
that were originally derived for terrestrial applications. Countless 
non-unique and repetitive surface features (e.g. impact craters 
with similar appearance, boulder fields, etc.) cover many 
planetary bodies such as the Earth’s Moon. This study provides 
insight into the effectiveness of various feature detectors and 
descriptors on images acquired of planetary surfaces under 
various lighting and viewing geometries. 
 
1.2 Objectives 

The objective of this study is to analyze how feature detection, 
description, and matching techniques handle planetary images 
that lack hard corners seen in terrestrial images (i.e., roof lines 
and/or road intersections) and contain many features that look 
similar (i.e. crater rims and boulder fields). By comparing the 
performance of each algorithm and identifying optimal routines 
for a given type of image, one can increase the success of 
registering image pairs, locating objects/features in a scene, 
and/or reconstructing the scene using multiple images.  
 
Since the inclusion of feature matching into ISIS3, Becker and 
co-workers (2016) used feature matching routines to create a 
global control network of the planet Mercury. In doing so, they 
controlled 100,432 images with sub pixel accuracy. Using a 

FASTX future detector and SIFT descriptor, and a brute force 
matcher they derived 12,596,336 control points and 94,745,475 
tie point measurements. From the global control point cloud, 
Becker et al. (2016) created a 64 pixel/degree digital elevation 
model of the planet.  
 
In addition, Speyerer et al. (2016) used feature matching to 
calibrate the Clementine UVVIS camera system. In this study, 
they identified common features in UVVIS and LROC WAC 
observations acquired under similar lighting and viewing 
geometries. Using these control points, they calculated the actual 
focal length for each UVVIS band, the optical distortion, and the 
orientation of the camera during each observation. By registering 
the two datasets, comparative studies can be carried out using 
UVVIS images and datasets tied to the LRO coordinate system, 
which is the generally accepted system for reporting and 
describing lunar features.   
  
This study investigates the performance and robustness of 
common feature detectors and descriptors on optical images as 
well as examines how illumination of the terrain effects the 
functionality. By understanding the capabilities and limits of 
various feature detectors and descriptors, users can improve their 
selection for studies that use images of planetary bodies. 
Eventually, feature matching routines could be used to create a 
global control mosaic of all the images acquired of a planetary 
body simplifying cross instrument and cross mission studies.  
 
 

2. MATERIALS AND METHODS 

2.1 Image Set 

For this analysis, we used images acquired by the Lunar 
Reconnaissance Orbiter. The mission launched in June of 2009 
and carries three science cameras that encompass the Lunar 
Reconnaissance Orbiter Camera payload (a single Wide Angle 
Camera and twin Narrow Angle Cameras; WAC and NACs). 
Each NAC incorporates a Ritchey-Chretien telescope with an 
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effective focal length of 700 mm and a line array CCD with an 
instantaneous field of view of 10 micro-radians (Robinson et al., 
2010). With this design, the NACs have a pixel scale of 0.5 m 
from an altitude of 50 km, which was the altitude during the 
primary mission. Since launch, the NACs have acquired over 1.6 
million images of the lunar surface over a broad range of lighting 
and viewing geometries. Prior to use in this study, we calibrated 
each LROC NAC image using the standard processing 
procedures outlined in Humm et al. (2016), which decompresses 
the image to the original 12-bit space and translates the raw 
digital number (DN) values into reflectance (I/F).   
 
2.2 Feature Detectors and Descriptors 

Feature registration and matching can be segmented into three 
parts: feature detection, feature description, and matching. In 
feature detection, a set of algorithms are applied to an image in 
order to identify “interesting” points or regions of an image. 
Among feature detectors, there are two general types we 
investigated: corner and blob. As the names suggest, corner 
detectors identify the corners or the intersections of two edges in 
an image and tags them as interest points. In terrestrial images, 
corner detectors are useful for tagging the corner of man-made 
structures, such as buildings and road intersections. blob 
detectors aim to detect unique regions in an image that have 
different properties than the remaining portion of the image, such 
as brightness. In this study, we evaluated several common feature 
detectors (see Table 1), including: Features from Accelerated 
Segment Test (FAST) (Rosten and Drummond, 2005; 2006), 
Minimum Eigenvalue Algorithm (Shi and Tomasi, 1994), Harris 
(Harris, 1988), Speeded-Up Robust Features (SURF) (Bay et al., 
2008), KAZE (Alcantarilla et al., 2012), Binary Robust Invariant 
Scalable Keypoints (BRISK) (Leutengger, 2011) and Oriented 
FAST and Rotated BREIF (ORB) (Rublee et al., 2011).  
    

Feature Detector Feature 
Type 

Scale 
Invariance 

FAST Corner No 
Minimum Eigenvalue Algorithm  Corner No 
Harris Corner No 
BRISK Corner Yes 
ORB Corner No 
SURF Blob Yes 
KAZE Blob Yes 

Table 1. Feature detectors used in this study. 

After detection, a separate set of algorithms are used to described 
the unique feature. As with the detectors, there are several types 
of feature descriptors (Table 2). In this analysis, we investigate 
the effectiveness of four feature descriptors and paired them with 
their detector counterparts: BRISK, ORB, SURF, and KAZE. In 
addition, we analyzed the Fast Retina Keypoint (FREAK; Alahi 
et al., 2012) descriptor using the input from the Harris detector.  
  

Feature Descriptors Binary Scale 
Invariance  

Rotation 
Invariance 

FREAK (input: Harris) Yes Yes Yes 
BRISK No Yes Yes 
ORB Yes No Yes 
SURF Yes Yes Yes 
KAZE No Yes Yes 

Table 2. Feature descriptors used in this study. 
 
2.3 Influence of Illumination on Feature Detectors 

As stated, the goal of a feature detector is to identify interesting 
portions of an image such as the corners of objects or regions of 
the image that appear similar. Planetary missions capture images 
of the terrain under a variety of lighting and viewing conditions. 
Therefore, an effective feature detector must work on images 
acquired under a variety of solar incidence angles. As seen in 
Figure 1, we selected a 256 x 256 pixel region from three LROC 
NAC observations with a solar incidence angles of 15°, 45°, and 
75°. The seven feature detectors where then applied to the 
cropped images and the 15 strongest detections from each 
algorithm were subsequently plotted. At small incidence angles 
(15°), we see the corner detectors focus on the boundaries of 
albedo variations around small fresh craters. As the incidence 
angle increases to 75° the corner detectors start identifying the 
sharp shadow boundaries around small craters. When applying 
the Oriented FAST and Rotated BREIF (ORB) detector (Rublee 
et al., 2011) to the three cropped images, we see concentric 
circles around a small number of surface features. This indicates 
that the 15 strongest detection signatures are occurring over the 
same region and at slightly different scales. For the two blob 
detectors we investigated, we see that the center of the detections 
generally lie in the middle of regions with the same intensity 
values. In the case for the small incidence angle images (15°) the 
KAZE detector identifies the center of regions where the albedo 
is higher than the surrounding regolith while at larger incidence 
angles (75°), the detector is sensitive to the regions of the image 
in shadow. 

 
Figure 1. Application of seven feature detectors on three 256x256 pixel sub-images of LROC NAC observations with incidence 
angles of 15° (M109753063L), 45° (M139396321R), and 75° (M1285183949L).  
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To further assess the effect of illumination, we selected a 1024 x 
1024 pixel region out of the center of 850 NAC images acquired 
in incidence angle bins of 1° to 85° (10 images in each bin) and 
applied the seven feature detectors to the image set. Figure 2 
shows the number of detected features using each algorithm. 
Apart from the Minimum Eigenvalue Algorithm, the number of 
detections increase as the incidence angle increases from 1 to 85° 
with SURF having the smallest increase from about 500 to 1500 
detections and ORB having the largest increase from about 1000 
to 5000 detections. In terms of processing time, in general, the 
time did not change with incidence angle except for ORB that 
had an increase from 0.02 to 0.05 seconds to process the sub-
region and KAZE that had an increase of around 150% to process 
the larger incidence angle images. 
 

 

 
Figure 2. Number of detections (top) and run time (bottom) vs. 

solar incidence angle. 
 
2.4 Assessing the Robustness of Feature Detectors 

A robust feature detector will identify the same point or region of 
interest regardless of rotation, scale, and noise. To examine the 
invariance due to rotation as a function of incidence angle, we 
selected a 1024 x 1024 region out of each NAC image. We then 
rotated the sub-image between 0 and 360° in 10° increments. To 
remove the impact of resampling and interpolation on the rotated 
images, we then reduced the image size of both the unmodified 
and the modified image by a factor of two making a 512 x 512 

image. We applied the feature detector to the image before and 
after rotation and computed the ratio of common features 
detected in both images and the total number of features detected 
(Figure 3). Since the field of view is different in each image due 
to the rotation, we only counted detected features within 256 
pixels of the image center. While the SURF descriptor is rotation 
invariant, the SURF detector struggled to detect the same surface 
feature when a slight rotation was applied to the image. Likewise, 
Minimum Eigenvalue Algorithm, BRISK, and Harris detectors 
did not perform as well when the image was rotated. On the other 
hand, the FAST, ORB, and KAZE detectors continued to match 
the same features when comparing to a rotated image. 
 
Next, we assessed the feature detectors to changes in scale. In this 
case we resampled the LROC NAC sub-image from 1024 x 1024 
to 512 x 512 and applied each feature detector to both images 
then compared them to identify how many features were 
detectible in the lower resolution image (Figure 4). As expected, 
the corner detectors that are scale independent fared better than 
the corner detectors that were not designed for detecting features 
over a range of scales. Ranked from best to worst in terms of 
repeatability at small incidence angles: BRISK, ORB, SURF, 
KAZE, Harris, Min Eigen and FAST. Overall, the repeatability 
was not affected by incidence angle with the exception of the 
Harris detector that was repeatable 40% of the time when the 
incidence angle was small (< 20°), but the repeatability decreased 
to 20% when the incidence angle was > 30°. Furthermore, as seen 
in Figure 1, the corner detectors that are not designed for changes 
in scale identified small contrast boundaries located around the 
smallest detectible impact craters. When the scale of the image 
was changed, these small craters were no longer visible. 
Therefore, the detector was not able to locate the same surface 
features in the reduced image.  
 

 
Figure 4. Repeatability of detection when the images is resized 

by a factor of two. 
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Figure 3. Repeatability of detection when the image is rotated.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1451-2019 | © Authors 2019. CC BY 4.0 License.

 
1453



 

Finally, we assessed the performance of each detector to noise. 
Depending on the planetary mission and instrument, different 
types of noise patterns effect the image. For example, some 
instruments suffer from salt and pepper noise due to bit errors 
while the quality of other images are reduced by Gaussian noise. 
Figure 5 shows the impact of salt and pepper noise modifying 
2.5% of the pixels on the detector results. At small incidence 
angles, the performance of the FAST and BRISK detectors 
suffered greatly with the inclusion of noise resulting in 40 to 140 
times as many detections as the original images without noise. 
This is likely due to corner detectors matching the smallest 
detectable features, which in this case is the salt and pepper noise 
pattern. However, at high incidence angles, the effect of the noise 
was reduced on both detectors. Meanwhile, the two blob 
detectors suffered the least from the additional image noise.  
 
When examining the robustness to Gaussian noise with a mean 
of zero and a variance of 0.001, 0.011 and 0.021, we found that 
at small variance levels, the Harris corner detector suffered the 

worst and at higher levels the FAST detector was more 
susceptible to the Gaussian noise. Again, we see that the effect of 
the noise decreases as the incidence angle increases and the two 
blob detectors (SURF and KAZE) as well as the Minimum 
Eigenvalue Algorithm suffered the least from the inclusion of 
additional Gaussian noise. 
  
2.5 Examining the Robustness of Feature Descriptors  

As with the feature detectors, we assessed the robustness of 
feature descriptors to rotation, scale, and noise. Likewise, we 
selected a 1024 x 1024 region out of each NAC image. We then 
rotated the sub-image between 0 and 360° in 15° increments. To 
remove the impact of resampling and interpolation on the rotated 
images, we then reduced the image size of both the unmodified 
and the modified image by a factor of two making a 512 x 512 
image. We used the result of the appropriate feature detectors 
from section 2.4 as input into the descriptor algorithm (Harris à 
FREAK; BRISK à BRISK; ORB à ORB; SURF à SURF; 
KAZE à KAZE). We then used a brute force feature matcher to 
compare the descriptions and produce a set of matched points. By 
knowing the actual displacement caused by the image rotation, 
we calculated the number of correct and incorrect matches. 
Figure 7 shows the results to the number of matched features vs. 
the number of detected features as well as the percentage of 
correctly matched features. Most descriptors performed well, 
except for the KAZE descriptor, which was not able to correlate 
features when the image was rotated. The bottom row of Figure 
7 shows that when matched, the accuracy was high (>85%) for 
all the descriptors tested.  
 
Next, we examined the robustness of the five feature descriptors 
to a change in image scale by resizing the image to half its length 
on each side. We then compared the number of true matches to 
the total number of matches identified (Figure 8). With the input 
provided by the Harris detector, the FREAK descriptor did not 

 
Figure 5. Increase in the number of false feature detections 
when salt and pepper noise is applied to 2.5% of the frame. 

 
Figure 6. Increase in the number of false feature detections when Gaussian noise is applied to image with a mean of zero and a 

variance of 0.001 (Left), 0.011 (middle) and 0.021 (right). 
 

 
Figure 7. Performance of feature descriptors when the image is rotated. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1451-2019 | © Authors 2019. CC BY 4.0 License.

 
1454



 

identify any correct matches. Of the remaining descriptors, the 
SURF and BRISK descriptors worked the best with our dataset.  
 
Finally, we examined the robustness of the feature descriptors to 
noise (Figure 9) following the same techniques discussed in the 
previous section and found that the SURF and KAZE performed 
well (>60% correctly matched features vs the number of detected 
features) when a small amount of noise was included, but all 
descriptors had less success when additional noise was added to 
the image. 

 
Figure 8. Performance of feature descriptors when the scale of 

the image was reduced by a factor of two. 
 
 

3. CONCLUSIONS AND FUTURE WORK 

Our analysis of feature detectors and descriptors show there is 
not an ideal set of algorithms that can successfully tie every 
image of our diverse dataset and maintain robustness to rotation 
variation, scale, and image noise. In general, the corner detectors 
focused on small features in the image and slight variations in 
surface reflectance, while the blob detectors identified regional 
trends in the dataset. In addition, at high incidence angles the blob 
detectors focused on uniform shadowed regions. As a result, the 
performance of corner detectors suffered from changes in image 
scale and noise than either blob detector we analysed.   
 
In terms of the feature descriptors, the SURF and BRISK 
descriptors each paired with their detector counterparts generally 
outperformed the other three detectors in terms of robustness 
when applying a rotation, scaling, and adding noise to the image. 
However, when matching the SURF descriptors, we did find that 
about 25% of the descriptors were incorrectly matched when 
rotation was applied to the image. Thus, additional tests may be 
required to remove false matches. 

It should also be noted that some algorithms (i.e., KAZE 
detector) required much more time to execute than others (Figure 
2). Future work will help quantify the resource usage of each 
algorithm in terms of CPU usage and memory to better 
understand which set of algorithms could be applied to real-time 
applications, such as image based navigations and other routines 
needed for pinpoint landings. 
 
While this study investigated the impact of the solar incidence 
angle, further work will address how feature detectors and 
descriptors handle images with different emission angles. This 
analysis will help identify proper routines needed to register 
features in geometric stereo observations and can provide a 
sparse set of tie points for image triangulations and terrain 
reconstruction.  
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