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ABSTRACT: 

 

Floating car data (FCD) is becoming more and more relevant for mobility domain applications, overcoming issues derived by the use 

of physical sensors (e.g. inductive loops, video observation, infrared and laser vehicle detection etc.), such as limited geographical 

distribution, measure inhomogeneities, limited or null coverage of minor  roads. An increasing number of vehicles are equipped with 

devices capable of acquiring GPS positions and other data, transmitted in almost real-time to traffic control centres. Based on FCD 

data, several traffic analysis in support to mobility services can be performed: vehicle density, speed, origin-destination matrices, 

different patterns in function of vehicle type. If currently the representativeness of FCD can be considered an issue, current growing 

trend in FCD penetration should naturally overcome this issue. FCD are also higher sensitive to traffic events (e.g. traffic jams) than 

model-based approaches. 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Population travel behaviour modelling is a fundamental process 

in transportation planning and in the management of urban 

transportation systems. It plays a pivotal role in developing 

strategies that help alleviate urban traffic congestion (Hu et al, 

2009) and support traffic management during special events and 

emergencies (Arco et al., 2017). Floating car data (FCD) is 

based on the collection of georeferenced data, by mean of 

GNSS receiver, inertial platforms, accelerometers and 

odometers, regarding speed, direction of travel and time 

information from on board unit (OBU) in vehicles that are being 

driven. 

This data collection technique is becoming more and more 

relevant for mobility domain applications (Altintasi et al., 

2017), in order to overcome some specific issues: 

 road network fixed sensors (based on induction loops or 

aerial configuration) able to collect similar data are not 

always sufficiently distributed over a given area, and their 

installation and maintenance is rather costly; 

 road network fixed sensors acquire different type of data 

that, not always, are characterized by a given homogeneity, 

conveying to the impossibility to analyse, with standard 

procedures, this data over larger areas; 

 road network fixed sensors are usually installed over main 

roads, being not able to analyse data also in collector’s and 

local roads; that means, for example, the impossibility to 

route and/or to build up Origin/Destination (O/D) matrix for 

consistent areas and/or for whole cities. 

 

Schäfer et al., 2002, described an experience of generating 

comprehensive traffic analysis by means of consistent numbers 

of FCD, highlighting as this solution provides higher coverage 

than point sensors (e.g. inductive loops, video observation, 

infrared and laser vehicle detection etc.) and at lower costs. 

Due to the fact that an increasing number of vehicles are 

equipped with a “black box” that contains a GPS receiver 

(typically fleets such as courier and freight services and private 

cars where this system allows insurance policy consistent 

savings), acquired data can definitely help in trying to solve the 

previously mentioned issues. This is also possible mainly 

because collected data, being transmitted to a control centre by 

using mobile phone network and/or on-board radio unit, are 

available in almost real time for further processing, having a 

reduced latency time related to network downloading speed. 

Authors took into consideration a significant amount of FCD 

data acquired in the city of Torino (Figure 1): a sample 

composed by more than 375.000 records acquired by devices 

mounted on almost 10.000 vehicles (Figure 2) collected over 17 

consecutive hours (from 05/02/2019 17:00 CET to 06/02/2019 

10:00 CET), in order to: 

 discuss and document the FCD data model and acquisition 

mode; 

 conciliate GPS positions with available Open Source (OS) 

road networks. Due to the intrinsic positional accuracy of 

the code coordinates GPS acquisition, planimetric position 

could be affected by positional errors (ranging from few 

centimetres to some meters) and, due to GPS multipath or 

shadowing effects, the coordinates could be affected also by 

gross errors; 

 transfer mobility impedances, intended as the relationship 

between road traveling time and traffic load pressure, are 

then calculated. Taking into account the data model defined 

at point 2), data are updated, assigning to every single arc of 

the road network travelling times and traffic load derived 

from the aggregation of all journeys (subdivided into private 

cars and fleet vehicles) and their timestamps; 

 using the updated dataset, different travel behaviour 

characteristics are analysed: a) fluxes and velocity over 

every single arc, using the total number of vehicles 

associated to the road network; b) fluxes and velocity over 

every single arc) traffic profiles, in different period of the 

day , over road network arcs and nodes; d) O/D spatial 

interactive matrix generation and updating. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1517-2019 | © Authors 2019. CC BY 4.0 License.

 
1517



 

 

All the described procedures have been compared with already 

operational mobility services based on fixed sensors (induction 

loops and aerial sensors), in order to benchmark (in term of 

cost, timeliness and information content) and discuss possible 

improvement of the delivered services and/or the service 

delivery to areas with a lack of fixed mobility sensors. 

 

 
Figure 1. The municipality of Torino (in blue) and its 

metropolitan area 

 

 
 

Figure 2. Number of records and unique vehicles in each one 

hour interval for the available sample of FCD 

 

2. FCD DATA DESCRIPTION 

FCD Data are acquired by On-Board Unit (OBU) mounted on 

board of vehicles, typically private cars linked to insurance 

policies, and trucks/vans managed in a fleet environment. One 

of the main information acquired by OBU is the position, 

acquired by means of a GPS receiver, using both a temporal and 

speed sampling interval: if longer distances are driven, shorter 

is the temporal sampling time, and vice versa. 

Every acquired record is composed by different fields: time 

stamps, latitude, longitude, speed, heading, Horizontal Dilution 

Of Precision (HDOP, Langley, 1999), engine status, vehicle 

type (private car/fleet). Every single record is then assigned to a 

unique ID representing a unique vehicle.  The field ID-DEVICE 

represents the identifier of the OBU from which the record is 

generated and can be used as a proxy for unique vehicle. 

Acquired data are then transmitted in almost real-time to a data 

centre via mobile network or radio connection. 

 

3. FCD DATA PROCESSING 

Open Transport Map1 (OTM) is an open dataset based on 

OpenStreetMap2 data and accessible in a scheme compatible to 

INSPIRE Transport Network (Figure 3). In the framework of 

the present research activity, OTM has been used to generate a 

reference road network dataset. Associate the FCD positions 

with digital maps of urban roads enables travel behaviour 

analysis, such as the estimation of speed and travel time of 

vehicles on different roads (He et al., 2014). FCD positions has 

been uniquely assigned to a single OTM network element by 

means of the identification of the nearest road element to the 

FCD position: the distance between the two elements has been 

calculated and stored (Figure 4). 

 

3.1 Positional accuracy 

Analysing the statistical distribution of the distance between 

each FCD position and the nearest road element (Table 1), 

standard deviation value (approx. 13 m) is considered accurate 

enough to consider the attribution to road element accurate 

enough for the specific purposes of the analysis, i.e. to generate 

analysis to support mobility services at municipality level by 

mainly transforming single points to travel paths (see chapter 

4), minimising in this way the impact of outliers (e.g. an FCD 

points wrongly assigned to the incorrect travel direction is 

overcome by the possibility of generating correct path direction, 

exploiting FCD timestamps). Therefore, all FCD positions, 

including those with high positional errors, have been 

considered (Ravanelli et al, 2018; Pirotti et al., 2018). 

 

 
 

Figure 3. OTM road network within the Torino municipality 

area, symbolised on functional classes (green = motorways, 

orange = first class, yellow = second/third classes, grey = other 

classes) 

 

The information about the GPS signal quality, included in the 

FCD data structure and expressed in HDOP, is clearly 

                                                                 
1 http://opentransportmap.info/ 
2 https://www.openstreetmap.org 
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correlated with urban landscape, i.e. higher values are 

concentrated in the more densely populated areas, where urban 

canyons are more frequent (Figure 5). 

 

 
 

Figure 4. Mean distance between each single FCD and the 

nearest OTM network element (green = 0-7 m, yellow = 7-13 m, 

red > 13 m) 

 

Parameter m 

Minimum 0.00 

Maximum 471.70 

Mean 6.80 

St. Dev. 13.21 

 

Table 1. Statistical parameters characterising the distribution of 

the distance between each single FCD position and the nearest 

road network element 

 

 
 

Figure 5. Mean HDOP value registered for each available FCD 

position and assigned to OTM road network elements (green = 

lower values and higher GPS signal quality, yellow = mean 

values and mean GPS signal quality, red = higher values and 

lower GPS signal quality) 

 

3.2 Comparison with data coming from traffic sensors 

FCD data have been compared with on-site measurements 

acquired by different sensors (aerial and induction loops) 

operated by the company 5T, a public company having as main 

stakeholders City, Province and Regional authorities and 

responsible of developing and providing mobility services in 

Torino. In the framework of the Traffic Operations Centre 

(TOC), 5T manages the traffic infrastructures installed on the 

territory of the Torino municipality. Among the different data 

acquired continuously and 24/7, fixed sensors measurements 

allow to derive traffic hourly flows, based on which hourly 

traffic profile can be derived. 5T traffic light control system is 

supported by approximately. 3400 different sensors in the 

whole Turin metropolitan area, the urban agglomeration centred 

on the city of Turin (Figure 1). Within the Turin municipality 

area, 5T freely provides access to vehicle flow data measured by 

124 sensors3. 

The total number of OTM road network elements where at least 

one FCD position has been acquired is 22259, out of a total of 

30278, i.e. the 73% of the road network elements has at least 

one FCD position, a significant amount considering that the 

available sample covers only 17 hours. The number of OTM 

road network elements covered drops to 9867 (32%) if we 

consider only those with at least 10 FCD positions; and to 1632 

(5%) if we consider only those with at least 50 FCD positions. 

Even in this worst case, the number of road network elements 

with a significant amount of data for generating traffic profiles 

is significantly higher than the coverage provided bt 5T.  

Evaluating the representativeness of the available FCD sample, 

in terms of total numbers it correspond to the 1.1% of the total 

vehicle transit measured by fixed sensors (Table 2): the number 

of vehicles estimated by the loops in the considered time frame 

is 431879, while the number of unique vehicles coming from 

FCD data is 4736. This is in line with the percentage of cars 

with an FCD sensor mounted in respect to the total car 

population, provided by the FCD data provider. The percentage 

of the FCD sample is higher on peak hours, suggesting an 

higher penetration of FCD sensors mounted on vehicles used 

for commuting: this may be explained by the higher impact of 

insurance facilitations, normally linked with FCD installation, 

on people using a vehicle on a daily basis. 

 

 

Time 

interval 

N. of vehicles 

Loop sensor FCD % 

17:00-18:00 93841 1033 1.1 

18-00-19:00 96121 1353 1.4 

19:00-20:00 85507 1067 1.2 

20:00-21:00 59688 506 0.8 

21:00-22:00 36584 319 0.9 

22:00-23:00 32866 242 0.7 

23:00-24:00 27272 216 0.8 

17:00-24:00 431879 4736 1.1 

 

                                                                 
3 http://www.5t.torino.it/wp-content/uploads/2018/03/scheda_fdt.pdf 
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Table 2. Comparison, in terms of number of vehicles, between 

measures coming from loop sensors and FCD data 

 

Figure 6 displays the traffic profiles of the 124 road network 

elements equipped with fixed sensors in the period 17:00 – 

24:00 of the 05/02/2019. From the FCD dataset it is possible to 

extract and count the number of unique vehicles passing over 

the same instrumented road network elements and in the same 

interval of time: this allows to create traffic profiles based on 

FCD data (Figure 7). Even if clearly affected by the difference 

in numerosity, the traffic profiles in Figure 6 and Figure 7 

present similar trends. Figure 8 displays a comparison between 

mean standardised sensor and FCD data for each time interval: 

numbers related to transits has been standardised in order to 

take into account the difference in numerosity. From this graph 

a correlation between the two observations is evident. 

Comparing mean FCD transit values with total transits 

measured by means of traffic sensor and grouped in classes, a 

good overall correlation can be found: from this analysis it 

seems that an higher correlation between the two dataset can be 

obtained over road network elements with lower traffic volumes 

(Figure 9). 

 

 
 

Figure 6. Traffic profiles derived from 5t fixed sensors 

 

 
 

Figure 7. Traffic profiles derived from FCD 

 

Figure 10 shows a comparison between transits measured with 

sensors and with FCD: an absolute difference of the number of 

passages at each sensor location has been calculated and 

displayed. From this elaboration seems to emerge a better 

correlation in the central part of the city. 

One of the main outcomes of this comparison analysis is that, if 

considering FCD absolute values is critical, due to the limited 

representativeness of the sample and of the devices penetration 

rate, analysis on relative and mean values can provide 

significant insights for analysing mobility patterns and develop 

mobility services. 

 

 
 

Figure 8. Comparison between the mean of standardised values 

acquired by sensors (blue line) and by FCD devices (red line) 

 

Figure 10 shows a comparison between transits measured with 

sensors and with FCD: an absolute difference of the number of 

passages at each sensor location has been calculated and 

displayed. From this elaboration seems to emerge a better 

correlation in the central part of the city. 

One of the main outcomes of this comparison analysis is that, if 

considering FCD absolute values is critical, due to the limited 

representativeness of the sample and of the devices penetration 

rate, analysis on relative and mean values can provide 

significant insights for analysing mobility patterns and develop 

mobility services. 

 

 
Figure 9. Mean value of FCD data plotted against vehicle transit 

categories acquired by sensors. 
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Figure 10. Comparison between sensor data and FCD (green = 

lower differences, red = higher differences) 

4. TRAVEL BEHAVIOUR CHARACTERISTICS 

Once demonstrated that FCD has characteristics (information 

content and related accuracies) enabling their use in traffic 

analysis, the research activity focused on creating examples of 

travel behaviour characteristics analysis based on this type of 

data. Figure 11 displays a map of the Torino municipality where 

road network elements has been classified in function of the 

number of unique vehicles that travelled on each specific road 

element in the morning rush hour (from 07:30 to 09:30 CET) of 

the 06/02/2019. 

FCD is in its nature trip based (Wang et al., 2010): extracting 

paths taken by the vehicles from such sparse data is an 

important step towards travel time estimation (Rahmani et al., 

2013). Starting from FCD points, a procedure for identifying 

single travel paths has been developed. For each single vehicle, 

uniquely identified by the ID_DEVICE field, the procedure: 

 selects and order in ascending mode, based on the 

Timestamp field, all acquired positions; 

 loops on the positions and, every time 2 consecutive ones 

are further than a pre-defined distance (x meters) or differs 

from more than a pre-defined amount of time, set a new 

travel path; 

 all position attributed to a single ID_DEVICE and a single 

travel path are joined in sequence (based on the Timestamp 

filled) and mean values of speed, heading and HDOP, 

together with total length in meters, are calculated and 

associated to each single path. 

 

The procedure, applied to the available sample, generates a total 

of 4854 paths transited by 2011 different vehicles. 

Travel paths can be then associated to road network elements 

and different traffic related considerations can be made on the 

basis of travel path summarised data. Figure 12 displays the 

mean overall length (length divided by the number of travel 

paths) of travel paths per each single road network element. 

From this analysis, it is evident that traffic that travels along 

major roads (crossing the city NNE to SSW and WNW to ESE) 

normally travels longer distances: while traffic traveling local 

roads normally travels shorter distances. 
 

 
 

Figure 11 Vehicle flow during morning rush hour estimated 

from FCD 

 

 
 

Figure 12. OTM road network classified based on normalised 

sum of path distances (green=shortest paths, red=longest paths) 

 

FCD based system is particularly able to detect jammed 

situations and the travel times calculated by the system deliver 

valuable data for mobility and traffic information systems 

(Brockfeld et al., 2007). Exploiting the recording by FCD of the 

speed value, it is possible to visualize the mean speed over the 

whole network: Figure 13 displays the mean speed value 

considering all records available in the FCD sample and clearly 

highlight main high speed roads and local roads. The use of the 

timestamp associated to FCD data allows to calculate mean 

speeds in the different moments of the day (Figure 14), useful 

for estimating dynamic travel times. 
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Figure 13. Mean speed recorded over the whole road network 

(green = lower speed, red = higher speed). 

 

  

17:00-19:30 19:30-22:00 

 

22:00-00:30 

 

00:30-03:00 

 

03:00-05:30 

 

05:30-08:00 

 

08:00-10:00 

Figure 14. Mean travel speed in the different time slots. 

Exploiting the availability of an attribute identifying the type of 

vehicle (private car or fleet) on which the FCD device is 

mounted, it is possible to monitor and study the different 

behaviour of these 2 categories. E.g., in Figure 15 it is 

highlighted that during the evening and first part of the night 

(from 19:30 to 00:30) there is a dominance of private cars, 

travelling on the most part of the city road network. During the 

deep night up to early morning (00:30-05:30), instead, fleets 

prevail, running mostly on high-speed/capacity ring roads. 

 

 

19:30–00:30 

 

00:30-05:30 

Figure 15. Different ratio between private cars (blue) and fleets 

(orange) paths in different periods. 

 

Time-varying origin-destination (OD) demands are the essential 

elements in the modelling and evaluation of urban traffic 

planning and traffic management and control strategies (Zhao et 

al., 2010). Based on traffic paths, it is possible to generate OD 

matrices, that allows to estimate dynamic spatial-temporal 

traffic distribution. By simply counting the travel path 

originating in a specific census area or ending in a specific one 

(Figure 16), it can be stated that most of the travel paths start 

and end in peripheral census areas. Calculating the total length 

of path crossing each census area, it is possible to highlight the 

census areas hosting higher traffic flows. Figure 17 displays this 

analysis and shows the major crossing paths used to reach 

destination areas from origin ones. 

 

 

Origin 

 

Destination 

Figure 16. Census areas symbolised by number of paths 

generated (left) or ending (right) inside them. 
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Figure 17. Census areas symbolised by total length of travel 

path crossing them (green colour = lower values, red colours = 

higher values) 
 

5. CONCLUSIONS 

This article presents the possibility to setup mobility services 

based on FCD. The main drawback of this specific analysis is 

the representativeness of and FCD-based sample, considering 

the limited penetration of OBU mounted on vehicles (according 

to the data provider, around 2% in Italy). This limitation is 

particularly relevant in this specific case study, considering that 

the authors had access only to a very limited subset, covering 

only 17 consecutive hours (from 05/02/2019 17:00 CET to 

06/02/2019 10:00 CET). Despite these intrinsic limitations, the 

statistical comparison with data coming from traffic sensors 

seems to show that, at least as relative figures, FCD can provide 

significant insights for analysing mobility patterns and develop 

mobility services. Furthermore, the results of traffic analysis 

seem very realistic and have the advantage of being more 

sensitive to specific events (e.g. incidents, mass events) than 

standard traffic models. An high spatial coverage (73% of the 

Turin road network elements has at least one FCD position) of 

the sample allowed to perform a comprehensive set of traffic 

analysis in support of mobility services, at a significant lower 

cost than one based on traffic sensors. 

Further research activity foreseen by the pool of authors include 

a more accurate validation of FCD data using sensor data as 

reference set, once a more representative sample of FCD data 

will be available, and a validation of traffic analysis with similar 

products based on sensor and models. 
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