
K-NEAREST NEIGHBOUR QUERY PERFORMANCE ANALYSES ON A LARGE SCALE

TAXI DATASET: POSTGRESQL vs. MONGODB

İ. B. Coşkun 1, S. Sertok 2, B. Anbaroğlu 1, *

1 Dept. of Geomatics Engineering, Hacettepe University, Turkey – (ihsan.coskun, banbar)@hacettepe.edu.tr

2 Dept. of Statistics, Hacettepe University, Turkey – sibel.sertok@hacettepe.edu.tr

Commission IV, WG IV/4

KEY WORDS: spatial query, kNN, database, GIS, open-source

ABSTRACT:

The increasing volume of transport network data necessitates the use of a DataBase Management System (DBMS) to store, query and

analyse data. There are two main types of DBMS: relational and non-relational. Many different DBMS are available on the market but

only some of them could handle spatial data. Therefore, determining which DBMS to use for operational purposes is of interest to

researchers and analysts working in spatial information science. One of the commonly used spatial queries in GIS is the k-Nearest

Neighbour (kNN) of a given point. This paper analyses the performance of the kNN query in PostgreSQL and MongoDB, both being

a representative of relational and NoSQL DBMS respectively. Two different metrics have been investigated to determine the

performance: i) spatial accuracy and ii) run time. Haversine and Vincenty formulas are used to calculate the distance between the point

and the determined neighbours, which are then used to determine the spatial accuracy of the DBMS. Sensitivity analysis have been

carried out by varying the k value and the execution times are recorded. The experiments are carried out on New York City’s openly

available taxi dataset consisting of millions of taxi pickup and dropoff points. The results indicate that MongoDB outperforms Postgres

both in terms of execution time and spatial accuracy regardless the value of k. In order to facilitate reproducibility of the results, the

developed software is shared on GitHub.

1. INTRODUCTION

One of the commonly used spatial analysis methods on point

datasets is the k-Nearest Neighbour (kNN) method. The method

has initially been proposed for point classification (Cover and

Hart 1967), but has been used for different purposes ranging from

house rent price estimation to privacy preserving on

spatiotemporal databases (Dritsas et al., 2018; Hu et al., 2019).

The method relies on pairwise distance between points. The

performance of the algorithm mainly depends on two parameters:

the distance calculation method and the value of k. Considering

that the amount of spatial point data generated on a daily basis is

ever increasing, the need to rely on a DataBase Management

System (DBMS) is apparent. However, as different DBMS could

be used to store and query spatial data, it is important to

investigate the kNN performance of different DBMS. In this way,

researchers or companies would have a better-informed decision

regarding the choice of the correct DBMS for their operational

use.

There are mainly two types of DBMS, relational and non-

relational. The traditional approach in GIS is to use relational

DBMS, where data are stored in tables. Determining the

attributes of tables and linking different tables with each other

necessitates a data schema. The emergence of web-based systems

makes it difficult to determine such a schema since modelled

systems are dynamic, which led to the emergence of non-

relational, or shortly NoSQL (Not Only SQL) databases.

Consequently, they are well suited for today’s need of modelling

highly dynamic, usually web-based, systems (Veenendaal,

Brovelli, and Li 2017). Considering that there are many different

DBMS available on the market, this paper focused on a

representative of each DBMS type: PostgreSQL (Postgres) with

PostGIS extension and MongoDB to investigate the query

* Corresponding author

performance of kNN on a large-scale, openly available dataset:

taxi records of New York City (Donovan and Work 2014).

There are three main reasons behind relying on the

aforementioned DBMSs. First, they both support spatial data

types as well as provide spatial indexing mechanism to improve

the performance of queries. Second, they are both open-source

software. Third, they possess a large user base. The former two

reasons indicate that technical issues could be resolved quickly.

The aim of this paper is to investigate the kNN query

performance of Postgres and MongoDB in two different aspects.

First, run times are investigated through a sensitivity analysis by

varying the values of k for randomly chosen points. Second,

spatial accuracy of different DBMS are compared with respect to

Haversine and Vincenty formulas (Mahmoud and Akkari 2016).

The results indicate the superiority of MongoDB compared to

Postgres in both aspects. It detects the kNN of a query point

instantly and the neighbours detected are more closer to the query

point regardless the value of k. In order to ease reproducibility of

the results as well as increase the collaborative efforts, the project

is initiated as open-source and shared on GitHub (Coşkun, 2019).

The remainder of this paper is organised as follows. Section 2

provides the literature review regarding the use of kNN in spatial

information science and the characteristics of different DBMS.

Section 3 provides the methodology of the paper and the

subsequent section provides the results on a large-scale taxi

dataset. Finally, Section 5 concludes the paper by providing a

discussion of the results and their implications for future studies.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1531

2. LITERATURE REVIEW

The growth of data volume in all research areas led researchers

and analysts to store their data in a DBMS. At the time of writing,

345 DBMSs are compared on db-engines.com. Therefore, the

right choice of the DBMS for the operational purpose of a

company or organisation is an important step to achieve their

desired performance goal (Makris et al., 2019).

Researchers compared different DBMS for various tasks. For

example, (Freire et al., 2016) compared the performance of XML

databases, such as BaseX, eXistdb and Berkeley DB, with

MySQL and Couchbase regarding population-based queries on a

healthcare dataset. Having analysed parameters like disk storage,

query response and indexing times, they suggest that Couchbase

could be a better alternative amongst the alternatives. (Mehta et

al., 2017) compared SciDB, Spark and Myria on two large image

datasets belonging to astronomy and neuroscience. Their

findings suggest the importance of parallelization of operations

and memory management to eliminate out-of-memory errors.

Pereira, Morais, and Freitas (2018) analysed the effectiveness of

NoSQL DBMSs including Couchbase, MongoDB and

RethinkDB in a single and multi-thread environment with a

simple data model consisting of five attributes (i.e. id, number,

date, customer and amount). The tests were carried out on a web-

based platform on common operations such as post, patch, get

and delete. Their findings suggest that Couchbase performs better

in most scenarios regarding response times and server’s

throughput.

Spatial databases have the ability to index spatial data, support

spatial data types such as points, lines and polygons and perform

spatial queries. Therefore, researchers are also interested in

assessing the performance of DBMSs regarding spatial queries.

For instance, Schmid, Galicz, and Reinhardt (2015) compared the

performance of Postgres and MongoDB regarding the point-in-

polygon analysis. They found out that, as the size of the database

increases, MongoDB performs better than Postgres. In another

study, Matuszka and Kiss (2014) compared the relational

DBMSs Postgres, MySQL and Oracle with non-relational

DBMSs Jena and Sesame. Loading data and query time of point-

in-polygon analysis are investigated. Results suggest that Oracle

and Postgres outperform others in respective operations. Last,

Agarwal and Rajan (2016) investigated the performance of

Postgres and MongoDB regarding line intersection and point-in-

polygon queries. Results suggest that MongoDB outperforms

Postgres with an average factor of 25 and suggest that “NoSQL

databases may be better stated for simultaneous multiple-user

query systems including Web-GIS and mobile-GIS”.

It should also be highlighted that even though some researchers

overly mention the word ‘spatial database’, it is not clear which

DBMS they relied on (Chen et al., 2010). In addition, not all of

the common queries are investigated and there is lack of research

evidence regarding the performance of detecting the kNN of a

query point. Since kNN is applied in many different research

areas, including indoor environments (Alamri,2018), researchers

have investigated efficient ways to index spatial data to reduce

kNN execution times (Zhong et al., 2013). The effectiveness of

indexing spatial data regarding query execution times has already

been demonstrated (Nguyen,2009). The existing research

indicates the necessity to investigate the performance of spatial

queries, and more specifically kNN on different DBMS.

3. METHODOLOGY

This paper analyses the query performance of kNN on two

renowned DBMS: Postgres and MongoDB. Therefore, the first

step of the methodology is to import the openly available taxi

data set of New York City into Postgres. The main reason to first

import the data to Postgres is to assure that each record has a

unique ID, which is not readily available in raw data. Second,

through a Python function, postgres2GeoJSON, the database is

converted into chunks of GeoJSON files, which could then be

imported into MongoDB. Third, Haversine and Vincenty

distance functions are used to calculate the distance between two

points to assess the spatial accuracy of the detected nearest

neighbours (Veness, 2019). Finally, a sensitivity analysis is

conducted by varying the value of k on randomly chosen taxi

pickup locations. Methodology of the paper is summarised in

Figure 1.

k-NN

Haversine

Vincenty

Spatial Accuracy

Execution Time

Figure 1 Performance analyses of Postgres and MongoDB

regarding the kNN query

Indexing is used in databases to speed up query execution

(Nguyen, 2009). There are different indexing methods, whose

names and characteristics vary depending on the database and

data type that the index is going to operate. Spatial indexes use

for spatial data. One of the commonly used spatial indeces in

Postgres is the Generalized Search Tree (GIST). On the other

hand, the spatial index is mandatory to execute a spatial query in

MongoDB, and ‘2Dsphere’ spatial index method is used because

it calculates geometries on a sphere instead of a two-dimensional

plane. Consequently, the attributes that store the pickup and

dropoff locations are indexed by using GIST and 2DSphere in

Postgres and MongoDB respectively.

Two different queries could be executed in Postgres to determine

the kNN of a given random query point p. The first one uses the

same trips table twice. It calculates the kNN of the randomly

chosen trip’s pickup location, whose id field is the same in both

of them. The second approach uses a subquery to first select the

query point, and then the kNN of the pickup location of this trip

is determined. Since the second approach do not multiply the

same table twice, it is expected to be faster. In MongoDB, the

database is referred to as nyc2015 and the query depicted in

Figure 2 is used to determine the kNN of the given query point p.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1532

select t2.id

from trips t1, trips t2

where t1.id = p.id

order by t1.l_pickup <-> t2.l_pickup

limit k

db.nyc2015.find({

 l_pickup: {

 $nearSphere: {

 $geometry: {

 type: "Point",

 coordinates: [p.x, p.y] } } } }

).limit(k)

select id

from trips

order by l_pickup <->

 (select l_pickup

 from trips

 where id = p.id)

limit k

v1

v2

Figure 2 kNN queries in Postgres (v1 and v2) and MongoDB

In all of the aforementioned distance calculations, the shortest

distance between two points on the earth is calculated. Sphere

and ellipsoid are the most suitable geometric shapes to represent

the earth mathematically. Haversine and Vincenty distance

functions could be used to calculate the distance between two

points, where the coordinates are represented in geographical

projection system (i.e. latitude and longitude).

Different DBMS could detect different nearest neighbours for the

same query point p. In order to assess the spatial accuracy of the

detected nearest neighbours, Haversine and Vincenty distances

could be used. Assume that the most distant nearest neighbour of

point p for a given k value is denoted as 𝑥𝑘
𝑃 and 𝑥𝑘

𝑀 for Postgres

and MongoDB respectively. The Haversine distance between the

point of interest and its most distant nearest neighbour found in

Postgres and MongoDB is denoted as H(𝑝, 𝑥𝑘
𝑃) and H(𝑝, 𝑥𝑘

𝑀)

respectively. Similarly, Vincenty distance is denoted as V(𝑝, 𝑥𝑘
𝑃)

and V(𝑝, 𝑥𝑘
𝑀). If, for instance, H(𝑝, 𝑥𝑘

𝑀) < H(𝑝, 𝑥𝑘
𝑃), then

MongoDB’s most distant nearest neighbour is closer to point p

than Postgres’ most distant nearest neighbour. In other words,

Postgres would have detected other points that should not be

considered within the set of nearest neighbours making it less

accurate.

3.1 Haversine Distance

The shape of the earth is considered as a sphere in the Haversine

distance, which is also referred to as the great circle distance. It

is calculated as shown in Equation 1:

𝑑 = 2𝑟 sin−1 (√sin2 (
𝛷2 − 𝛷1

2
) + cos(𝛷1) cos(𝛷2) sin2 (

𝜆2 − 𝜆1

2
)) (1)

The radius of the earth (r) is assumed to be 6371 km and Φp, λp

are the latitude and longitude of point p respectively.

The Haversine distance function requires a single parameter,

which is the radius of the earth. Therefore, its calculation is

simple. However, it is not as reliable as the Vincenty function as

it assumes a sphrecial earth model.

3.2 Vincenty Distance

Vincenty distance could be used in two different ways. First, in

the direct Vincenty problem, the coordinate of the first point and

its distance to the second point are given, and the coordinate of

the second point is calculated. Second, in the inverse Vincenty

problem, the coordinate of two points is given and the distance

between these two points and azimuth angle are calculated

(Vincenty, 1975). This paper relies on the latter approach, as the

aim is to calculate the distance between two points.

The shape of the world could be modelled using an ellipsoid,

which is what Vincenty distance function does. Different

ellipsoids such as WGS84, GRS50 and ED50 could be used to

model the earth, and therefore its calculation is more complex

compared to the Haversine function. This paper relies on the

WGS84 ellipsoid parameters, as it is the most common used

global reference system. (Veness, 2019) provides a detailed

formulation as well as the Python script to calculate the Vincenty

distance, which is what this paper relies on.

4. RESULTS

This section describes the experimentation results regarding the

performance and effectiveness of the kNN query obtained by

analysing the taxi data of New York City in 2015. The taxi trip

records involving 19 attributes are first successfully imported

into the staging table of Postgres amounting to 146,112,989 trips.

While importing the raw data into Postgres, a unique ID attribute

is also generated to ease the comparison between Postgres and

MongoDB. Second, postgres2GeoJSON function is used to

create chunks of GeoJSON files, which are then used to import

the data from Postgres to MongoDB. While importing chunks of

taxi trips into MongoDB one chunk failed to load, where each

chunk contains two million trips. In order to conduct the analyses

on time, those trips are also removed from Postgres. Finally, two

geometry attributes (i.e. a point in WGS84 – EPSG: 4326) are

created in Postgres on top of the staging table by using the

latitude/longitude of the pickup and dropoff points respectively.

MongoDB requires the spatial field to be indexed in order to

facilitate spatial queries. Therefore, pickup and dropoff locations

are indexed using the ‘2dsphere’ index. In order to provide a fair-

comparison framework, the same attributes are also indexed in

Postgres using the ‘gist’ index.

The overview of the systems and the data that are used in the

analyses are provided in Table 1. All of the experiments are

carried out on a computer having a 16 GB RAM with a CPU of

3.60 GHz.

Table 1 Overview of the experimentation platform

 Postgres MongoDB

Version
9.6.11 with

PostGIS 2.5
4.1.6

Licence
PostgreSQL

License

GNU

AGPL v3.0

Gui pgAdmin III Studio 3T

Spatial Index Gist 2dsphere

Temporal Index Btree Ascending

Size on Disk 27.5 GB 22.3 GB

Total trips 144,112,989

Two main criteria are evaluated in the experimentation. First,

execution times of kNN queries are recorded for different values

of k. Second, match percentages of the detected neighbours are

compared between two types of Postgres queries (Postgres-v1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1533

and Postgres-v2) and also between Postgres-v2 and MongoDB.

Once it is shown that Postgres and MongoDB may identify

different sets of points as neighbours, Vincenty and Haversine

functions are used to determine which DBMS produces more

accurate results. In order to have a better understanding of the

performance of DBMSs, the analyses have been carried out on

the whole year as well as on a single randomly chosen day.

It should also be noted that there are erroneous trips in the dataset

such as trips taking longer than a day or trips having the same

pickup and dropoff location or time (Donovan and Work 2017).

However, one of the major source of error is the lack of GNSS

signal while recording the pickup and dropoff locations. In that

case, the value of the latitude and longitude would be zero. There

are in total of 2,266,845 such trips in the investigated dataset. If

such a point is randomly chosen, all of its kNN would be in that

set, which would not be meaningful in our analysis. Therefore, it

is assured that no randomly chosen query pickup point has a zero

latitude or longitude.

4.1 Year-long analysis

In this section all of the available trips in both Postgres and

MongoDB databases are used. Thirty random pickup points are

determined and kNN of these points are determined for k ∈ {1,

10, 100, 1K, 10K, 100K}. Even though it is rare to determine

100K nearest neighbours of a query point, it is still important to

observe how the databases behave when such large k values are

provided. Average execution times for all the 30 query points are

shown in Figure 3.

Figure 3 Execution analysis for whole year of 2015

As expected Postgres-v2 is faster than Postgres-v1, since it first

finds the query point and then calculates the distance to the

remaining points. Execution times of Postgres-v1 and Postgres-

v2 remain steady until k reaches 100K. At that point, the average

execution times increase substantially and reach 715 and 45

seconds in Postgres-v1 and Postgres-v2 respectively. This

complex behaviour is probably related to the default parameter

settings of Postgres (e.g. effective_cache_size, work_mem,

max_fsm_pages etc.) as well as the index and the operating

system (Cao et al., 2008). MongoDB, just like Postgres-v2, first

determines the query point and then determines the kNN of that

point. Surprisingly, MongoDB detected the kNN of a query point

immediately and regardless of the value of k unlike Postgres-v2.

The second part of the analysis is to determine the match

percentage of the detected neighbours of different approaches.

Assume that the set of points belonging to the query point are

denoted as NN(P-v1), NN(P-v2) and NN(M) for Postgres-v1,

Postgres-v2 and MongoDB respectively. Thereon, the match

percentage between, for instance, Postgres-v2 and MongoDB

would be calculated as |𝐍𝐍(𝐏˗𝐯𝟐) ∩ 𝐍𝐍(𝐌)| × 100. This

process is repeated for all the 30 query points and k values,

between Postgres-v1 and Postgres-v2; and Postgres-v2 and

MongoDB. The boxplot of the results are illustrated in Figure 4

and Figure 5 respectively.

It should be noted that it is likely to observe several trips having

exactly the same latitude and longitude values in their pickup

locations. Therefore, once k is set to one, any of these points

would be acceptable. For this reason, when k is equal to one, we

could either observe a complete match or no match at all.

Figure 4 Match percentage of Postgres-v1 and Postgres-v2

It appears that Postgres-v1 and Postgres-v2 identified different

portions of the points occurring at exact locations as the nearest

neighbour; hence, both no match and perfect match were

observed. As the value of k increases, so does the match

percentage between different Postgres approaches. Specifically,

the match percentage rises from 97.50% to 99.95% as k increases

from 10 to 100K. The remaining part of the analysis relied on

Postgres-v2 as it executes faster.

Figure 5 Match percentage of Postgres-v2 and MongoDB

MongoDB and Postgres-v2 match only on six points out of 30

randomly chosen points when k equals to one. These points

defined as outliers because the matching rate is zero. The median

match percentages increase from 80% to 94.8% as k increases

from 10 to 100K. However, the increment in the match

percentages are not linear and when k=1K, it becomes 91.05%.

Even though, the match percentages are quite high for 𝑘 ≥ 10, it

is still important to highlight the distinction between the detected

nearest neighbours.

The results indicate that there the detected neighbours for the

same point might vary depending on the DBMS. Therefore, it is

important to determine which one to rely on when spatial

accuracy is considered. Recall that V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) denote

the Vincenty distance between the query point p to its most

distant nearest neighbour in Postgres and MongoDB

respectively. Our empirical results suggest that there is no

significant difference between Haversine and Vincenty distance

functions because points are very close to each other. Therefore,

Vincenty distance function is preferred to determine the spatial

accuracy as it is more accurate compared to the Haversine

function (Mahmoud and Akkari 2016).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1534

The V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) are calculated for each of the

randomly chosen p values. This process is repeated for all of the

30 random points and k ∈ {1, 10, 100, 1K, 10K, 100K}.
Consequently, a total of 180 distance values are recorded and the

scatter plot of these values are illustrated in Figure 6, where x-

axis denotes V(𝑝, 𝑥𝑘
𝑃) and y-axis denotes V(𝑝, 𝑥𝑘

𝑀).

Figure 6 Maximum Vincenty distances for 2015

If all the points were on the illustrated diagonal line, then one

would suggest that both DBMS are the same regarding spatial

accuracy. If the plotted values are below the line and closer to

Postgres, then it would mean that MongoDB is more accurate

since its most distant nearest neighbour is closer than Postgres’

most distant neighbour, which is indeed the outcome. Formally,

the results suggest that V(𝑝, 𝑥𝑘
𝑃) > V(𝑝, 𝑥𝑘

𝑀). Even though the

difference between the Vincenty values gets generally larger with

higher values of k, it is still possible to observe small differences

as well, which is the main reason why k=1 points are not visible

on the graph as other points were located on top of them. In order

to improve the legibility of the results, Vincenty distances up to

30 metres are illustrated in Figure 7, which corresponds to the

region denoted in dashed lines.

Figure 7 Maximum Vincenty distance up to 30 meters for the

whole year

Out of the 180 points, 131 of them are below the line. Remaining

49 points are exactly on the x=y line. Interestingly, Postgres-v2

have not found a better result at any query point for any given k

value.

4.2 Single day analysis

All of the aforementioned analyses has been repeated for a single

day, which is randomly chosen to be 23 May 2015, on which

approximately 383 thousand trips occurred. For this day, another

set of 30 random pickup points are determined and kNN of these

pickup locations are determined for k ∈ {1, 5, 10, 20, 50, 100}.
Average execution times of the kNN query of these 30 points are

compared on various k values, which are shown in Figure 8.

Figure 8 Average execution time analysis on 23 May 2015

As expected, MongoDB outperforms PostgreSQL in terms of

execution time regardless the value of k, since all the neighbours

were almost immediately found again. The average execution

times of Postgres-v1 and Postgres-v2 are steady and about 0.3

and 0.04 seconds respectively. In this scenario, an abrupt increase

in the execution times are not observed for the investigated k

values, since probably default Postgres parameters were fine

enough and that the k values are much smaller compared to the

ones used in the year-long analysis.

The second analysis is about identifying the match percentage of

the detected nearest neighbours between different approaches. If

the ratio is one, then both of the queries would have detected the

same points as the kNN of the query point. The match percentages

for all the 30 query points are identified for all the k values

between Postgres-v1 and Postgres-v2, and Postgres-v2 and

MongoDB. The boxplots are illustrated in Figure 9 and Figure 10

respectively.

Figure 9 Match percentage of Postgres-v1 and Postgres-v2

Postgres-v1 and Postgres-v2 match perfectly regardless of the

value of k except the outliers. For instance, there are three outliers

when k=5. The closest four nearest neighbours are common in

both Postgres-v1 and Postgres-v2; hence, the match percentage

is 80%. Consequently, the most distant nearest neighbour is not

common, since these points are equidistant to the query point but

have different locations. When the third outlier is analysed, it is

observed that Postgres-v2 detected a point that is actually farther

from what Postgres-v1 had detected. It should also be noted that

the opposite situation have also been observed when k=20, in

which the spatial accuracy of Postgres-v1 is better than Postgres-

v2. Last, it should be noted that two or more pickup locations

could exactly be the same, which also contributes to the existence

of outliers.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1535

Figure 10 Match percentage of Postgres-v2 and MongoDB

Unlike the comparison between the Postgres approaches, there is

more variation regarding the match percentage between Postgres-

v2 and MongoDB. The match percentage ranged from 80% to a

complete match when k is 20 with a median of 90%. Likewise,

median match percentages are 92% and 92.5% when k values are

50 and 100 respectively. Therefore, it could be stated that over

90% of the detected neighbours match between Postgres and

MongoDB regardless the value of k.

Just like the year-long analysis, the V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) are

calculated for each of the randomly chosen p values. This process

is repeated for all of the 30 random points and k ∈ {1, 5, 10, 20,
50, 100}. Consequently, a total of 180 distance values are

recorded and the scatter plot of these values for the analysed day

is illustrated in Figure 11, where x-axis denotes V(𝑝, 𝑥𝑘
𝑃) and y-

axis denotes V(𝑝, 𝑥𝑘
𝑀).

Figure 11 Maximum Vincenty distances on 23 May 2015

The results are in-line with what had been observed on the year-

long analysis and that MongoDB outperformed Postgres in terms

of spatial accuracy. In this analysis, two points deserve attention.

Point-of-interest (POI) – 1 has the largest Vincenty difference

V(𝑝, 𝑥𝑘
𝑃) − V(𝑝, 𝑥𝑘

𝑀). On the other hand, POI-2 has the largest

maximum V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) values, indicating that the

randomly chosen point p is not at a central location. In order to

improve the legibility of the results, distances up to only 30

metres are visualised in Figure 12 for a better interpretation.

Figure 12 Maximum Vincenty distances up to 30 meters

Out of the 180 values, 68 of them are on the x=y line and 112 of

them are below the line supporting the previous finding. Results

show that MongoDB provides more accurate and faster results

compared to Postgres-v2 regarding the detection of kNN of a

query point regardless the value of k.

4.3 POI Based Analysis

This subsection provides an in-depth analysis of the two POIs

illustrated in Figure 11. The lowest match percentage between

Postgres and MongoDB has occurred on POI-1. Only 75% of the

detected neighbours matched out of the k=100 neighbours. Even

though the difference V(𝑝, 𝑥𝑘
𝑃) − V(𝑝, 𝑥𝑘

𝑀) is only nine meters,

it is still important to highlight the success of MongoDB. The

POI and its neighbours detected by Postgres-v2 and MongoDB

are illustrated in Figure 13.

Figure 13 POI-1 – the largest Vincenty difference Postgres-v2

and MongoDB

Another interesting query point is POI-2, where the largest

V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) values are observed, which is

approximately 240 meters. The difference between the maximum

Vincenty distances of Postgres-v2 and MongoDB is about seven

meters. The POI-2 and its 100 nearest neighbours are illustrated

in Figure 14.

Figure 14 The biggest maximum Vincenty distance visualization

As expected, this point occurred on the suburbs of New York

City, which is close to a highway near the Hudson River. First,

due to topography of the area, neighbours cannot spread all

directions. In addition, the area is not as densely populated as

financial district Manhattan where the majority of taxi trips take

place.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1536

5. CONCLUSION

The need to choose the correct DBMS to store spatial data is

eminent. Traditional way is to rely on relational DBMSs, such as

Postgres, due to their natural linkage with GIS. However, the

emergence of web based systems, which are dynamic in nature,

prohibit defining a data schema. Therefore, researchers

developed non-relational DBMSs such as MongoDB, which also

support spatial data types.

Extensive test scenarios need to be carried out to determine the

performance of DBMS for a given scenario. In this paper, the

performance of a common spatial query –detecting the kNN of a

query point- is investigated for the aforementioned DBMSs. The

experiments are carried out on the openly available taxi dataset

of New York City. Results favour MongoDB as it is faster and

more accurate compared to Postgres.

While importing the data to both of the DBMS as well as creating

the spatial indices, default parameter settings are used. In this

way, a spatial analyst, who might not have the technical skills to

tune the relevant parameters, could easily rely on the findings of

this paper.

The future work will focus on different spatial queries as well as

those that concern different spatial data types including lines and

polygons. In addition, the effectiveness of the parallel query or

partitioning features of Postgres could be investigated. Last, other

DBMS that support spatial data types could be included in the

developed library.

ACKNOWLEDGEMENTS

This research is supported by the Scientific and Technological

Research Council of Turkey (TÜBİTAK) with the grant number

of 118Y282. The authors are also thankful to the online

communities, StackOverflow and GIS StackExchange. The

contents of this paper reflect the views of the authors, who are

responsible for the facts and the accuracy of the results presented

herein.

REFERENCES

Agarwal, S., K. S. R., 2016. ‘Performance Analysis of MongoDB

versus PostGIS/PostGreSQL Databases for Line Intersection and

Point Containment Spatial Queries’. Spatial Information

Research 24 (6): 671–77.

Alamri, S., 2018. ‘Spatial Data Managements in Indoor

Environments: Current Trends, Limitations and Future

Challenges’. International Journal of Web Information Systems

14 (4): 402–22.

Cao, Y., Das, G.C., Chan, C.Y., Tan, K.L., 2008. ‘Optimizing

Complex Queries with Multiple Relation Instances’. In ACM

SIGMOD International Conference on Management of Data,

525–538.

Chen, Z., Shen, H.T., Zhou, X., Zheng, Y., Xie X., 2010.

‘Searching Trajectories by Locations: An Efficiency Study’. In

ACM SIGMOD International Conference on Management of

Data, 255–266.

Coşkun, B., (2019) 2019. K-NN: Postgres vs MongoDB. Python.

https://github.com/bugracoskun/K-NN.

Cover, T., Hart, P., 1967. ‘Nearest Neighbor Pattern

Classification’. IEEE Transactions on Information Theory 13

(1): 21–27.

Donovan, B., Work, D., 2014. ‘New York City Taxi Trip Data

(2010-2013)’. http://dx.doi.org/10.13012/J8PN93H8.

Donovan, B., Work, D., 2017. ‘Empirically Quantifying City-

Scale Transportation System Resilience to Extreme Events’.

Transportation Research Part C: Emerging Technologies 79:

333–346.

Dritsas, E., Trigka, M., Gerolymatos, P., Sioutas S., 2018.

‘Trajectory Clustering and K-NN for Robust Privacy Preserving

Spatiotemporal Databases’. Algorithms 11 (12): 207.

Freire, S.M., Teodoro, D., Wei-Kleiner, F., Sundvall, E.,

Karlsson, D., Lambrix, P., 2016. ‘Comparing the Performance of

NoSQL Approaches for Managing Archetype-Based Electronic

Health Record Data’. PLOS ONE 11 (3): e0150069.

Hu, L., He, S., Han, Z., Xiao, H., Su, S., Weng, M., Cai, Z., 2019.

‘Monitoring Housing Rental Prices Based on Social Media:An

Integrated Approach of Machine-Learning Algorithms and

Hedonic Modeling to Inform Equitable Housing Policies’. Land

Use Policy 82: 657–73.

Mahmoud, H., Akkari, N., 2016. ‘Shortest Path Calculation: A

Comparative Study for Location-Based Recommender System’.

In 2016 World Symposium on Computer Applications Research

(WSCAR), 1–5.

Makris, A., Tserpes, K., Spiliopoulos, G., Anagnostopoulos D.,

2019. ‘Performance Evaluation of MongoDB and PostgreSQL

for Spatio-Temporal Data’. In . Vol. 2322.

Matuszka, T., Kiss, A., 2014. ‘Experimental Evaluation of Some

Geodata Management Systems’. In 2014 9th International

Conference on Computer Engineering Systems (ICCES), 92–97.

Mehta, P., Dorkenwald, S., Zhao, D., Kaftan, T., Cheung, A.,

Balazinska, M., Rokem, A., Connolly, A., Vanderplas, J.,

AlSayyad, Y., 2017. ‘Comparative Evaluation of Big-Data

Systems on Scientific Image Analytics Workloads’. Proc. VLDB

Endow. 10 (11): 1226–1237.

Nguyen, T. T. T., 2009. ‘Indexing PostGIS Databases and Spatial

Query Performance Evaluations’. International Journal of

Geoinformatics 5 (3).

Pereira, D.A., Wagner Ourique de Morais, Edison Pignaton de

Freitas. 2018. ‘NoSQL Real-Time Database Performance

Comparison’. International Journal of Parallel, Emergent and

Distributed Systems 33 (2): 144–156.

Schmid, S., Galicz, E., Reinhardt, W., 2015. ‘WMS Performance

of Selected SQL and NoSQL Databases’. In International

Conference on Military Technologies (ICMT) 2015, 1–6.

Veenendaal, B., Brovelli, M.A., Li S., 2017. ‘Review of Web

Mapping: Eras, Trends and Directions’. ISPRS International

Journal of Geo-Information 6 (10): 317.

Veness, C., 2019. ‘Vincenty Solutions of Geodesics on the

Ellipsoid’.https://www.movabletype.co.uk/scripts/latlong-

vincenty.html.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1537

Vincenty, T., 1975. ‘Direct and Inverse Solutions of Geodesics

on the Ellipsoid with Application of Nested Equations’. Survey

Review 23 (176): 88–93.

Zhong, R., Li, G., Tan, K.L., Zhou L., 2013. ‘G-Tree: An

Efficient Index for KNN Search on Road Networks’. In

Proceedings of the 22. ACM International Conference on

Information & Knowledge Management, 39–48.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1531-2019 | © Authors 2019. CC BY 4.0 License.

1538

