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ABSTRACT: 

 

The increasing volume of transport network data necessitates the use of a DataBase Management System (DBMS) to store, query and 

analyse data. There are two main types of DBMS: relational and non-relational. Many different DBMS are available on the market but 

only some of them could handle spatial data. Therefore, determining which DBMS to use for operational purposes is of interest to 

researchers and analysts working in spatial information science. One of the commonly used spatial queries in GIS is the k-Nearest 

Neighbour (kNN) of a given point. This paper analyses the performance of the kNN query in PostgreSQL and MongoDB, both being 

a representative of relational and NoSQL DBMS respectively. Two different metrics have been investigated to determine the 

performance: i) spatial accuracy and ii) run time. Haversine and Vincenty formulas are used to calculate the distance between the point 

and the determined neighbours, which are then used to determine the spatial accuracy of the DBMS. Sensitivity analysis have been 

carried out by varying the k value and the execution times are recorded. The experiments are carried out on New York City’s openly 

available taxi dataset consisting of millions of taxi pickup and dropoff points. The results indicate that MongoDB outperforms Postgres 

both in terms of execution time and spatial accuracy regardless the value of k. In order to facilitate reproducibility of the results, the 

developed software is shared on GitHub.  

 

 

1. INTRODUCTION 

One of the commonly used spatial analysis methods on point 

datasets is the k-Nearest Neighbour (kNN) method. The method 

has initially been proposed for point classification (Cover and 

Hart 1967), but has been used for different purposes ranging from 

house rent price estimation to privacy preserving on 

spatiotemporal databases (Dritsas et al., 2018; Hu et al., 2019). 

The method relies on pairwise distance between points. The 

performance of the algorithm mainly depends on two parameters: 

the distance calculation method and the value of k. Considering 

that the amount of spatial point data generated on a daily basis is 

ever increasing, the need to rely on a DataBase Management 

System (DBMS) is apparent. However, as different DBMS could 

be used to store and query spatial data, it is important to 

investigate the kNN performance of different DBMS. In this way, 

researchers or companies would have a better-informed decision 

regarding the choice of the correct DBMS for their operational 

use.    

 

There are mainly two types of DBMS, relational and non-

relational. The traditional approach in GIS is to use relational 

DBMS, where data are stored in tables. Determining the 

attributes of tables and linking different tables with each other 

necessitates a data schema. The emergence of web-based systems 

makes it difficult to determine such a schema since modelled 

systems are dynamic, which led to the emergence of non-

relational, or shortly NoSQL (Not Only SQL) databases. 

Consequently, they are well suited for today’s need of modelling 

highly dynamic, usually web-based, systems (Veenendaal, 

Brovelli, and Li 2017). Considering that there are many different 

DBMS available on the market, this paper focused on a 

representative of each DBMS type: PostgreSQL (Postgres) with 

PostGIS extension and MongoDB to investigate the query 
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performance of kNN on a large-scale, openly available dataset: 

taxi records of New York City (Donovan and Work 2014).  

 

There are three main reasons behind relying on the 

aforementioned DBMSs. First, they both support spatial data 

types as well as provide spatial indexing mechanism to improve 

the performance of queries. Second, they are both open-source 

software. Third, they possess a large user base. The former two 

reasons indicate that technical issues could be resolved quickly. 

 

The aim of this paper is to investigate the kNN query 

performance of Postgres and MongoDB in two different aspects. 

First, run times are investigated through a sensitivity analysis by 

varying the values of k for randomly chosen points.  Second, 

spatial accuracy of different DBMS are compared with respect to 

Haversine and Vincenty formulas (Mahmoud and Akkari 2016). 

The results indicate the superiority of MongoDB compared to 

Postgres in both aspects. It detects the kNN of a query point 

instantly and the neighbours detected are more closer to the query 

point regardless the value of k. In order to ease reproducibility of 

the results as well as increase the collaborative efforts, the project 

is initiated as open-source and shared on GitHub (Coşkun, 2019).  

 

The remainder of this paper is organised as follows. Section 2 

provides the literature review regarding the use of kNN in spatial 

information science and the characteristics of different DBMS. 

Section 3 provides the methodology of the paper and the 

subsequent section provides the results on a large-scale taxi 

dataset. Finally, Section 5 concludes the paper by providing a 

discussion of the results and their implications for future studies.  
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2. LITERATURE REVIEW 

The growth of data volume in all research areas led researchers 

and analysts to store their data in a DBMS. At the time of writing, 

345 DBMSs are compared on db-engines.com. Therefore, the 

right choice of the DBMS for the operational purpose of a 

company or organisation is an important step to achieve their 

desired performance goal (Makris et al., 2019).  

 

Researchers compared different DBMS for various tasks. For 

example, (Freire et al., 2016) compared the performance of XML 

databases, such as BaseX, eXistdb and Berkeley DB, with 

MySQL and Couchbase regarding population-based queries on a 

healthcare dataset. Having analysed parameters like disk storage, 

query response and indexing times, they suggest that Couchbase 

could be a better alternative amongst the alternatives. (Mehta et 

al., 2017) compared SciDB, Spark and Myria on two large image 

datasets belonging to astronomy and neuroscience. Their 

findings suggest the importance of parallelization of operations 

and memory management to eliminate out-of-memory errors. 

Pereira, Morais, and Freitas (2018) analysed the effectiveness of 

NoSQL DBMSs including Couchbase, MongoDB and 

RethinkDB in a single and multi-thread environment with a 

simple data model consisting of five attributes (i.e. id, number, 

date, customer and amount). The tests were carried out on a web-

based platform on common operations such as post, patch, get 

and delete. Their findings suggest that Couchbase performs better 

in most scenarios regarding response times and server’s 

throughput.  

 

Spatial databases have the ability to index spatial data, support 

spatial data types such as points, lines and polygons and perform 

spatial queries. Therefore, researchers are also interested in 

assessing the performance of DBMSs regarding spatial queries. 

For instance, Schmid, Galicz, and Reinhardt (2015) compared the 

performance of Postgres and MongoDB regarding the point-in-

polygon analysis. They found out that, as the size of the database 

increases, MongoDB performs better than Postgres. In another 

study, Matuszka and Kiss (2014) compared the relational 

DBMSs Postgres, MySQL and Oracle with non-relational 

DBMSs Jena and Sesame. Loading data and query time of point-

in-polygon analysis are investigated. Results suggest that Oracle 

and Postgres outperform others in respective operations. Last, 

Agarwal and Rajan (2016) investigated the performance of 

Postgres and MongoDB regarding line intersection and point-in-

polygon queries. Results suggest that MongoDB outperforms 

Postgres with an average factor of 25 and suggest that “NoSQL 

databases may be better stated for simultaneous multiple-user 

query systems including Web-GIS and mobile-GIS”.   

 

It should also be highlighted that even though some researchers 

overly mention the word ‘spatial database’, it is not clear which 

DBMS they relied on (Chen et al., 2010). In addition, not all of 

the common queries are investigated and there is lack of research 

evidence regarding the performance of detecting the kNN of a 

query point. Since kNN is applied in many different research 

areas, including indoor environments (Alamri,2018), researchers 

have investigated efficient ways to index spatial data to reduce 

kNN execution times (Zhong et al., 2013). The effectiveness of 

indexing spatial data regarding query execution times has already 

been demonstrated (Nguyen,2009). The existing research 

indicates the necessity to investigate the performance of spatial 

queries, and more specifically kNN on different DBMS. 

 

 

 

3. METHODOLOGY 

This paper analyses the query performance of kNN on two 

renowned DBMS: Postgres and MongoDB. Therefore, the first 

step of the methodology is to import the openly available taxi 

data set of New York City into Postgres. The main reason to first 

import the data to Postgres is to assure that each record has a 

unique ID, which is not readily available in raw data. Second, 

through a Python function, postgres2GeoJSON, the database is 

converted into chunks of GeoJSON files, which could then be 

imported into MongoDB. Third, Haversine and Vincenty 

distance functions are used to calculate the distance between two 

points to assess the spatial accuracy of the detected nearest 

neighbours (Veness, 2019). Finally, a sensitivity analysis is 

conducted by varying the value of k on randomly chosen taxi 

pickup locations. Methodology of the paper is summarised in 

Figure 1.  

 

k-NN

Haversine

Vincenty

Spatial Accuracy

Execution Time  

Figure 1 Performance analyses of Postgres and MongoDB 

regarding the kNN query 

 

Indexing is used in databases to speed up query execution 

(Nguyen, 2009). There are different indexing methods, whose 

names and characteristics vary depending on the database and 

data type that the index is going to operate. Spatial indexes use 

for spatial data. One of the commonly used spatial indeces in 

Postgres is the Generalized Search Tree (GIST). On the other 

hand, the spatial index is mandatory to execute a spatial query in 

MongoDB, and ‘2Dsphere’ spatial index method is used because 

it calculates geometries on a sphere instead of a two-dimensional 

plane. Consequently, the attributes that store the pickup and 

dropoff locations are indexed by using GIST and 2DSphere in 

Postgres and MongoDB respectively.  

 

Two different queries could be executed in Postgres to determine 

the kNN of a given random query point p. The first one uses the 

same trips table twice. It calculates the kNN of the randomly 

chosen trip’s pickup location, whose id field is the same in both 

of them. The second approach uses a subquery to first select the 

query point, and then the kNN of the pickup location of this trip 

is determined. Since the second approach do not multiply the 

same table twice, it is expected to be faster. In MongoDB, the 

database is referred to as nyc2015 and the query depicted in 

Figure 2 is used to determine the kNN of the given query point p.  
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select t2.id

from trips t1, trips t2

where t1.id = p.id 

order by t1.l_pickup <-> t2.l_pickup

limit k

db.nyc2015.find( {

    l_pickup: {

      $nearSphere: {

          $geometry: {

            type: "Point",

            coordinates: [p.x, p.y] } } } }

                       ).limit(k)

select id

from trips 

order by l_pickup <-> 

                    (select l_pickup 

                     from trips 

                     where id = p.id)

limit k

v1

v2

 
Figure 2 kNN queries in Postgres (v1 and v2) and MongoDB 

 

In all of the aforementioned distance calculations, the shortest 

distance between two points on the earth is calculated. Sphere 

and ellipsoid are the most suitable geometric shapes to represent 

the earth mathematically. Haversine and Vincenty distance 

functions could be used to calculate the distance between two 

points, where the coordinates are represented in geographical 

projection system (i.e. latitude and longitude).  

 

Different DBMS could detect different nearest neighbours for the 

same query point p. In order to assess the spatial accuracy of the 

detected nearest neighbours, Haversine and Vincenty distances 

could be used. Assume that the most distant nearest neighbour of 

point p for a given k value is denoted as 𝑥𝑘
𝑃 and 𝑥𝑘

𝑀 for Postgres 

and MongoDB respectively. The Haversine distance between the 

point of interest and its most distant nearest neighbour found in 

Postgres and MongoDB is denoted as H(𝑝, 𝑥𝑘
𝑃) and H(𝑝, 𝑥𝑘

𝑀) 

respectively. Similarly, Vincenty distance is denoted as V(𝑝, 𝑥𝑘
𝑃) 

and V(𝑝, 𝑥𝑘
𝑀). If, for instance, H(𝑝, 𝑥𝑘

𝑀) <  H(𝑝, 𝑥𝑘
𝑃), then 

MongoDB’s most distant nearest neighbour is closer to point p 

than Postgres’ most distant nearest neighbour. In other words, 

Postgres would have detected other points that should not be 

considered within the set of nearest neighbours making it less 

accurate.  

 

3.1 Haversine Distance 

The shape of the earth is considered as a sphere in the Haversine 

distance, which is also referred to as the great circle distance. It 

is calculated as shown in Equation 1: 

 

𝑑 = 2𝑟 sin−1 (√sin2 (
𝛷2 − 𝛷1

2
) + cos(𝛷1) cos(𝛷2) sin2 (

𝜆2 − 𝜆1

2
) ) (1) 

 

The radius of the earth (r) is assumed to be 6371 km and Φp, λp 

are the latitude and longitude of point p respectively.  

 

The Haversine distance function requires a single parameter, 

which is the radius of the earth. Therefore, its calculation is 

simple. However, it is not as reliable as the Vincenty function as 

it assumes a sphrecial earth model.  

 

3.2 Vincenty Distance 

Vincenty distance could be used in two different ways. First, in 

the direct Vincenty problem, the coordinate of the first point and 

its distance to the second point are given, and the coordinate of 

the second point is calculated. Second, in the inverse Vincenty 

problem, the coordinate of two points is given and the distance 

between these two points and azimuth angle are calculated 

(Vincenty, 1975). This paper relies on the latter approach, as the 

aim is to calculate the distance between two points.   

 

The shape of the world could be modelled using an ellipsoid, 

which is what Vincenty distance function does. Different 

ellipsoids such as WGS84, GRS50 and ED50 could be used to 

model the earth, and therefore its calculation is more complex 

compared to the Haversine function. This paper relies on the 

WGS84 ellipsoid parameters, as it is the most common used 

global reference system. (Veness, 2019) provides a detailed 

formulation as well as the Python script to calculate the Vincenty 

distance, which is what this paper relies on.  

 

4. RESULTS 

This section describes the experimentation results regarding the 

performance and effectiveness of the kNN query obtained by 

analysing the taxi data of New York City in 2015. The taxi trip 

records involving 19 attributes are first successfully imported 

into the staging table of Postgres amounting to 146,112,989 trips. 

While importing the raw data into Postgres, a unique ID attribute 

is also generated to ease the comparison between Postgres and 

MongoDB. Second, postgres2GeoJSON function is used to 

create chunks of GeoJSON files, which are then used to import 

the data from Postgres to MongoDB.  While importing chunks of 

taxi trips into MongoDB one chunk failed to load, where each 

chunk contains two million trips. In order to conduct the analyses 

on time, those trips are also removed from Postgres. Finally, two 

geometry attributes (i.e. a point in WGS84 – EPSG: 4326) are 

created in Postgres on top of the staging table by using the 

latitude/longitude of the pickup and dropoff points respectively.  

 

MongoDB requires the spatial field to be indexed in order to 

facilitate spatial queries. Therefore, pickup and dropoff locations 

are indexed using the ‘2dsphere’ index. In order to provide a fair-

comparison framework, the same attributes are also indexed in 

Postgres using the ‘gist’ index.  

 

The overview of the systems and the data that are used in the 

analyses are provided in Table 1. All of the experiments are 

carried out on a computer having a 16 GB RAM with a CPU of 

3.60 GHz.  

 

Table 1 Overview of the experimentation platform 

 Postgres MongoDB 

Version 
9.6.11 with 

PostGIS 2.5 
4.1.6 

Licence 
PostgreSQL 

License 

GNU  

AGPL v3.0 

Gui pgAdmin III Studio 3T 

Spatial Index Gist 2dsphere 

Temporal Index Btree Ascending 

Size on Disk 27.5 GB 22.3 GB 

Total trips 144,112,989 

 

Two main criteria are evaluated in the experimentation. First, 

execution times of kNN queries are recorded for different values 

of k. Second, match percentages of the detected neighbours are 

compared between two types of Postgres queries (Postgres-v1 
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and Postgres-v2) and also between Postgres-v2 and MongoDB. 

Once it is shown that Postgres and MongoDB may identify 

different sets of points as neighbours, Vincenty and Haversine 

functions are used to determine which DBMS produces more 

accurate results. In order to have a better understanding of the 

performance of DBMSs, the analyses have been carried out on 

the whole year as well as on a single randomly chosen day.  

 

It should also be noted that there are erroneous trips in the dataset 

such as trips taking longer than a day or trips having the same 

pickup and dropoff location or time (Donovan and Work 2017). 

However, one of the major source of error is the lack of GNSS 

signal while recording the pickup and dropoff locations. In that 

case, the value of the latitude and longitude would be zero. There 

are in total of 2,266,845 such trips in the investigated dataset. If 

such a point is randomly chosen, all of its kNN would be in that 

set, which would not be meaningful in our analysis. Therefore, it 

is assured that no randomly chosen query pickup point has a zero 

latitude or longitude.        

 

4.1 Year-long analysis 

In this section all of the available trips in both Postgres and 

MongoDB databases are used. Thirty random pickup points are 

determined and kNN of these points are determined for k ∈ {1, 

10, 100, 1K, 10K, 100K}. Even though it is rare to determine 

100K nearest neighbours of a query point, it is still important to 

observe how the databases behave when such large k values are 

provided. Average execution times for all the 30 query points are 

shown in Figure 3.  

 

 
Figure 3 Execution analysis for whole year of 2015 

 

As expected Postgres-v2 is faster than Postgres-v1, since it first 

finds the query point and then calculates the distance to the 

remaining points. Execution times of Postgres-v1 and Postgres-

v2 remain steady until k reaches 100K. At that point, the average 

execution times increase substantially and reach 715 and 45 

seconds in Postgres-v1 and Postgres-v2 respectively. This 

complex behaviour is probably related to the default parameter 

settings of Postgres (e.g. effective_cache_size, work_mem, 

max_fsm_pages etc.) as well as the index and the operating 

system (Cao et al., 2008). MongoDB, just like Postgres-v2, first 

determines the query point and then determines the kNN of that 

point. Surprisingly, MongoDB detected the kNN of a query point 

immediately and regardless of the value of k unlike Postgres-v2.  

 

The second part of the analysis is to determine the match 

percentage of the detected neighbours of different approaches. 

Assume that the set of points belonging to the query point are 

denoted as NN(P-v1), NN(P-v2) and NN(M) for Postgres-v1, 

Postgres-v2 and MongoDB respectively. Thereon, the match 

percentage between, for instance, Postgres-v2 and MongoDB 

would be calculated as |𝐍𝐍(𝐏˗𝐯𝟐) ∩ 𝐍𝐍(𝐌)| × 100. This 

process is repeated for all the 30 query points and k values, 

between Postgres-v1 and Postgres-v2; and Postgres-v2 and 

MongoDB. The boxplot of the results are illustrated in Figure 4 

and Figure 5 respectively.   

 

It should be noted that it is likely to observe several trips having 

exactly the same latitude and longitude values in their pickup 

locations. Therefore, once k is set to one, any of these points 

would be acceptable. For this reason, when k is equal to one, we 

could either observe a complete match or no match at all. 

 

 
Figure 4 Match percentage of Postgres-v1 and Postgres-v2 

 

It appears that Postgres-v1 and Postgres-v2 identified different 

portions of the points occurring at exact locations as the nearest 

neighbour; hence, both no match and perfect match were 

observed. As the value of k increases, so does the match 

percentage between different Postgres approaches. Specifically, 

the match percentage rises from 97.50% to 99.95% as k increases 

from 10 to 100K. The remaining part of the analysis relied on 

Postgres-v2 as it executes faster. 

 
Figure 5 Match percentage of Postgres-v2 and MongoDB 

 

MongoDB and Postgres-v2 match only on six points out of 30 

randomly chosen points when k equals to one. These points 

defined as outliers because the matching rate is zero. The median 

match percentages increase from 80% to 94.8% as k increases 

from 10 to 100K. However, the increment in the match 

percentages are not linear and when k=1K, it becomes 91.05%. 

Even though, the match percentages are quite high for 𝑘 ≥ 10, it 

is still important to highlight the distinction between the detected 

nearest neighbours.  

 

The results indicate that there the detected neighbours for the 

same point might vary depending on the DBMS. Therefore, it is 

important to determine which one to rely on when spatial 

accuracy is considered. Recall that V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) denote 

the Vincenty distance between the query point p to its most 

distant nearest neighbour in Postgres and MongoDB 

respectively. Our empirical results suggest that there is no 

significant difference between Haversine and Vincenty distance 

functions because points are very close to each other. Therefore, 

Vincenty distance function is preferred to determine the spatial 

accuracy as it is more accurate compared to the Haversine 

function (Mahmoud and Akkari 2016). 
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The V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) are calculated for each of the 

randomly chosen p values. This process is repeated for all of the 

30 random points and k ∈ {1, 10, 100, 1K, 10K, 100K}. 
Consequently, a total of 180 distance values are recorded and the 

scatter plot of these values are illustrated in Figure 6, where x-

axis denotes V(𝑝, 𝑥𝑘
𝑃) and y-axis denotes V(𝑝, 𝑥𝑘

𝑀). 

 

 
Figure 6 Maximum Vincenty distances for 2015 

 

If all the points were on the illustrated diagonal line, then one 

would suggest that both DBMS are the same regarding spatial 

accuracy. If the plotted values are below the line and closer to 

Postgres, then it would mean that MongoDB is more accurate 

since its most distant nearest neighbour is closer than Postgres’ 

most distant neighbour, which is indeed the outcome. Formally, 

the results suggest that V(𝑝, 𝑥𝑘
𝑃) >  V(𝑝, 𝑥𝑘

𝑀). Even though the 

difference between the Vincenty values gets generally larger with 

higher values of k, it is still possible to observe small differences 

as well, which is the main reason why k=1 points are not visible 

on the graph as other points were located on top of them. In order 

to improve the legibility of the results, Vincenty distances up to 

30 metres are illustrated in Figure 7, which corresponds to the 

region denoted in dashed lines. 

 

 
Figure 7 Maximum Vincenty distance up to 30 meters for the 

whole year 

 

Out of the 180 points, 131 of them are below the line. Remaining 

49 points are exactly on the x=y line. Interestingly, Postgres-v2 

have not found a better result at any query point for any given k 

value.  

 

4.2 Single day analysis 

All of the aforementioned analyses has been repeated for a single 

day, which is randomly chosen to be 23 May 2015, on which 

approximately 383 thousand trips occurred. For this day, another 

set of 30 random pickup points are determined and kNN of these 

pickup locations are determined for k ∈ {1, 5, 10, 20, 50, 100}. 
Average execution times of the kNN query of these 30 points are 

compared on various k values, which are shown in Figure 8.  

 
Figure 8 Average execution time analysis on 23 May 2015 

 

As expected, MongoDB outperforms PostgreSQL in terms of 

execution time regardless the value of k, since all the neighbours 

were almost immediately found again. The average execution 

times of Postgres-v1 and Postgres-v2 are steady and about 0.3 

and 0.04 seconds respectively. In this scenario, an abrupt increase 

in the execution times are not observed for the investigated k 

values, since probably default Postgres parameters were fine 

enough and that the k values are much smaller compared to the 

ones used in the year-long analysis. 

 

The second analysis is about identifying the match percentage of 

the detected nearest neighbours between different approaches. If 

the ratio is one, then both of the queries would have detected the 

same points as the kNN of the query point. The match percentages 

for all the 30 query points are identified for all the k values 

between Postgres-v1 and Postgres-v2, and Postgres-v2 and 

MongoDB. The boxplots are illustrated in Figure 9 and Figure 10 

respectively.  

 

 
Figure 9 Match percentage of Postgres-v1 and Postgres-v2 

 

Postgres-v1 and Postgres-v2 match perfectly regardless of the 

value of k except the outliers. For instance, there are three outliers 

when k=5. The closest four nearest neighbours are common in 

both Postgres-v1 and Postgres-v2; hence, the match percentage 

is 80%. Consequently, the most distant nearest neighbour is not 

common, since these points are equidistant to the query point but 

have different locations. When the third outlier is analysed, it is 

observed that Postgres-v2 detected a point that is actually farther 

from what Postgres-v1 had detected. It should also be noted that 

the opposite situation have also been observed when k=20, in 

which the spatial accuracy of Postgres-v1 is better than Postgres-

v2. Last, it should be noted that two or more pickup locations 

could exactly be the same, which also contributes to the existence 

of outliers.  
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Figure 10 Match percentage of Postgres-v2 and MongoDB 

 

Unlike the comparison between the Postgres approaches, there is 

more variation regarding the match percentage between Postgres-

v2 and MongoDB. The match percentage ranged from 80% to a 

complete match when k is 20 with a median of 90%. Likewise, 

median match percentages are 92% and 92.5% when k values are 

50 and 100 respectively. Therefore, it could be stated that over 

90% of the detected neighbours match between Postgres and 

MongoDB regardless the value of k.  

 

Just like the year-long analysis, the V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) are 

calculated for each of the randomly chosen p values. This process 

is repeated for all of the 30 random points and k ∈ {1, 5, 10, 20, 
50, 100}. Consequently, a total of 180 distance values are 

recorded and the scatter plot of these values for the analysed day 

is illustrated in Figure 11, where x-axis denotes V(𝑝, 𝑥𝑘
𝑃) and y-

axis denotes V(𝑝, 𝑥𝑘
𝑀). 

 

 
Figure 11 Maximum Vincenty distances on 23 May 2015 

 

The results are in-line with what had been observed on the year-

long analysis and that MongoDB outperformed Postgres in terms 

of spatial accuracy. In this analysis, two points deserve attention. 

Point-of-interest (POI) – 1 has the largest Vincenty difference 

V(𝑝, 𝑥𝑘
𝑃) −  V(𝑝, 𝑥𝑘

𝑀). On the other hand, POI-2 has the largest 

maximum V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) values, indicating that the 

randomly chosen point p is not at a central location. In order to 

improve the legibility of the results, distances up to only 30 

metres are visualised in Figure 12 for a better interpretation. 

 

 
Figure 12 Maximum Vincenty distances up to 30 meters  

 

Out of the 180 values, 68 of them are on the x=y line and 112 of 

them are below the line supporting the previous finding. Results 

show that MongoDB provides more accurate and faster results 

compared to Postgres-v2 regarding the detection of kNN of a 

query point regardless the value of k.  

 

4.3 POI Based Analysis  

This subsection provides an in-depth analysis of the two POIs 

illustrated in Figure 11. The lowest match percentage between 

Postgres and MongoDB has occurred on POI-1. Only 75% of the 

detected neighbours matched out of the k=100 neighbours. Even 

though the difference V(𝑝, 𝑥𝑘
𝑃) −  V(𝑝, 𝑥𝑘

𝑀) is only nine meters, 

it is still important to highlight the success of MongoDB. The 

POI and its neighbours detected by Postgres-v2 and MongoDB 

are illustrated in Figure 13. 

 

 
Figure 13 POI-1 – the largest Vincenty difference Postgres-v2 

and MongoDB 

 

Another interesting query point is POI-2, where the largest 

V(𝑝, 𝑥𝑘
𝑃) and V(𝑝, 𝑥𝑘

𝑀) values are observed, which is 

approximately 240 meters. The difference between the maximum 

Vincenty distances of Postgres-v2 and MongoDB is about seven 

meters. The POI-2 and its 100 nearest neighbours are illustrated 

in Figure 14. 

 

 
Figure 14 The biggest maximum Vincenty distance visualization 

 

As expected, this point occurred on the suburbs of New York 

City, which is close to a highway near the Hudson River. First, 

due to topography of the area, neighbours cannot spread all 

directions. In addition, the area is not as densely populated as 

financial district Manhattan where the majority of taxi trips take 

place.   
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5. CONCLUSION 

The need to choose the correct DBMS to store spatial data is 

eminent. Traditional way is to rely on relational DBMSs, such as 

Postgres, due to their natural linkage with GIS. However, the 

emergence of web based systems, which are dynamic in nature, 

prohibit defining a data schema. Therefore, researchers 

developed non-relational DBMSs such as MongoDB, which also 

support spatial data types.  

 

Extensive test scenarios need to be carried out to determine the 

performance of DBMS for a given scenario. In this paper, the 

performance of a common spatial query –detecting the kNN of a 

query point- is investigated for the aforementioned DBMSs. The 

experiments are carried out on the openly available taxi dataset 

of New York City. Results favour MongoDB as it is faster and 

more accurate compared to Postgres.  

 

While importing the data to both of the DBMS as well as creating 

the spatial indices, default parameter settings are used. In this 

way, a spatial analyst, who might not have the technical skills to 

tune the relevant parameters, could easily rely on the findings of 

this paper.    

 

The future work will focus on different spatial queries as well as 

those that concern different spatial data types including lines and 

polygons. In addition, the effectiveness of the parallel query or 

partitioning features of Postgres could be investigated. Last, other 

DBMS that support spatial data types could be included in the 

developed library.  
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