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ABSTRACT: 

Using multiple sources of 3D information over buildings to go from building footprints (LOD0) to higher LODs in CityGML models 

is a widely investigated topic. In this investigation we propose to use a very common 2.5D product, i.e. digital terrain and surface 

models (DTMs and DSMs), to test how much they can contribute to improve a CityGML model. The minimal information required to 

represents a 3 dimensional space in an urban environment is the combination of a DTM, the footprints of buildings and their heights; 

in this way a representation of urban environment to define LOD1 CityGML is guaranteed. In this paper we discuss the following 

research questions: can DTMs and DSMs provide significant information for modelling buildings at higher LODs? What characteristics 

can be extracted depending on the ground sampling distance (GSD) of the DTM/DSM? Results show that the used DTM/DSM at 1 m 

GSD provides potential significant information for higher LODs and that the conversion of the unstructured point cloud to a regular 

grid helps in defining single buildings using connected component analysis. Regularization of the original point cloud does loose 

accuracy of the source information due to smoothing or interpolation, but has the advantage of providing a predictable distance between 

points, thus allowing to join points belonging to the same building and provide initial primitives for further modelling. 

1. INTRODUCTION

Urban areas are continuously changing due to construction and 

extension of buildings. Dynamic and accurate update of 

geometries in a cartographic context is very important for 

multiple reasons, ranging from cadastre to land-cover analysis 

and 3D analysis for city management. Three-dimensional urban 

models are increasingly needed for applications as varied as 

urban planning and design, energy studies and tourism (Morgan 

and Habib, 2002; Steed et al., 2004). 

Representing geographical information of urban environment in 

a 3D space is becoming a common reality thanks to advancing 

technology in computer vision. This has found large interest in 

the scientific community engaged in numerous fields related to 

urban and natural environments because it can be used to 

simulate and apply models that can come closely represent the 

real world (Agugiaro, 2016). Virtual world representation are 

becoming current also on virtual globes, Google Earth being the 

most known, but also open source implementations like NASA’s 

World Wind  (Pirotti et al., 2017).   

Currently, there are several types of 3D standards and tools for 

displaying 3D geospatial data sets. Between standards, OGC 

CityGML is one of those that allow to represent together 

geometries and attributes. Moreover, the CityGML model offers 

the possibility to exchange and save easily the 3D dataset, since 

it has been developed as open standard model based on the xml 

format. CityGML is also extremely extensible through its 

application domain extensions (ADEs) – as described in 

(Agugiaro et al., 2018; Biljecki et al., 2018; Labetski et al., 2018; 

M. et al., 2000). 

The minimal information required to represents a 3 dimensional 

space in an urban environment is the terrain model (DTM), the 

footprint of buildings and their height; in this way the 

representation of urban environment to the level of detail LOD1 

is guaranteed. Other information related to the urban 

environment (e.g. roof type, number of floors, type of buildings) 

can be used as additional information to enrich semantics of the 

3D model. There are tools available that provide the capability of 

automatically creating LOD1 CityGML from this information. 

TUDelft’s 3dfier (Arroyo Ohori et al., 2018; TUDelft, 2019) 

finds building heights from LiDAR data in LAS/LAZ format and 

converts them to CityGML objects. Also roads and rivers are 

inserted in the 3D output, with topologically coherent objects (no 

sliver or gapped polygons). The software suite Feature 

Manipulation Engine – FME – was tested in an investigation 

(Sengul, 2012) and provides steps to extrude polygons with other 

data. These and further investigations are important because there 

are many datasets available from past surveys that are not used 

as 3D data, but do contain 3D information. For example digital 

cartography – geotopographic databases – LiDAR data, 

photogrammetric products etc... The biggest obstacle to fully 

exploit this information is variety, complexity and the 

heterogeneity of the source data formats.  

In recent years, the use of LiDAR data to model the urban 

environment has received greater attention due to the speed to 

collect 3D information about an urban site and the integration of 
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data with GNSS (Palmer and Shan, 2002; Verma et al., 2006). 

LiDAR data are very suitable for 3D reconstruction of urban 

features and have been widely investigated (Alharthy and Bethel, 

2001; Zeng, 2008). Application to CityGML modelling comes as 

a natural consequence and has been investigated through many 

approaches. In (Jayaraj and Ramiya, 2018) the details of the roof 

model is extracted using ArcGIS Pro tools. The tool tries to fit 

standard roof models to the LiDAR points that are labelled as 

roofs, and then fixes slope and aspect by analysing the residuals 

between the surfaces that are the output of the modelling and the 

points. 

 

In the detection and estimation of 3D elements of buildings from 

unstructured point clouds, one of the main issues is linked to the 

identification of the edges. This difficulty can be solved using 

additional information (commonly 2D information) concerning 

the shape of the foot  of the buildings that are retrieved through 

cartographic data. Detection of objects in point clouds is a widely 

investigated topic, with supervised classification of contextual 

features and segment-based features has given positive results 

(Vosselman, 2013; Weinmann et al., 2015) also regarding roof 

and façade detection (Barazzetti et al., 2010; Pirotti et al., 2019). 

 

Within the Urban-Geo Big Data project (Brovelli et al., 2017) an 

Italian project of national interest (PRIN 2015), a large amount 

of cartographic data related to some of the main Italian cities was 

collected. Amongst the targets of the project, there is a need to 

identify standards for the extract transform and load (ETL)  

process of conversion from cartographic vector models to 3D 

CityGML models. 

 

There are many solutions that convert in a semi-automatic way 

cartographic data to CityGML model. A custom solution used 

here, called shp2city (Fissore and Pirotti, 2018), was developed 

in Python, and uses as input the polygons of building footprints 

and uses attribute data from the input polygon or data from other 

vector files that have information on building height. In the latter 

case, a spatial join allows to associate the building footprint with 

the other data source. The output of shp2city is a 3D 

representation of the urban environment at LOD1, where 

footprints, the height of buildings and all the attributes used to 

enrich the 3D model are obtained by processing information 

present in the input geospatial data. The first version of shp2city 

was developed to processes only geospatial vector data format to 

generate CityGML model, simply extracting footprint from the 

geometry and building height from attributes. The success of 

creating the 3D model is of course limited to the availability of 

correct building height information in the attribute tables. 

 

Therefore, in the second version we are interested the possibility 

to obtain information of buildings height using indirect ways 

such as using LiDAR-derived models and cartography with 

machine learning models. (Alharthy and Bethel, 2001; 

Rottensteiner, 2008; Rottensteiner and Briese, 2002). In this 

solution information from lidar-derived terrain and surface 

models is used. This paper will address the problem of being able 

to integrate the cartographic data with information obtained from 

LiDAR-derived data DTMs and DSMs in order to: i) validate the 

information included in the cartographic dataset, ii) integrate 

missing data (mostly building height and roof type) (Lu et al., 

2014; Verma et al., 2006) iii) establish a proof of concept for 

creation of a 3D cityGML model with accurate and rich of 

information. The results showed in this paper are related to the 

city of Naples of which we have access to cartographic data at 

1:10000 scale, with height of each building, and DTM and DSM 

datasets obtained with LiDAR technology. 

 

 

1. STUDY AREA AND DATA 

1.1 Study Area 

The metropolitan city of Naples with a population of over three 

million people is the third metropolitan Italian city by number of 

inhabitants, while it is first in population density.  

The entire metropolitan area covers an area of 1,171 km² and 

includes 92 municipalities.  

 

 
 

 

 

Figure 1. Metropolitan City of Naples (Google Maps 2019) 

 

The main feature that distinguishes the city of Naples from other 

Italian metropolitan cities are: i) its seismic and volcanic 

vulnerability, due to the presence of Vesuvius and the Phlegraean 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1539-2019 | © Authors 2019. CC BY 4.0 License.

 
1540



 

Fields, ii) high concentration of the population on a restricted 

geographical area (on an area that cover just 8.6% of the area of 

Campania region, more than half of the entire regional population 

is concentrated). This phenomenon of overcrowding has created 

a strong demographic and territorial imbalance with the other 

areas of the region, Naples is nevertheless Italy's 3rd largest city 

by population, making it one of the most densely populated areas 

in Europe; the metropolitan region also includes the municipality 

of Casavatore, the highest-density municipality in Italy (at 12,000 

inhabitants/km²). 

 

1.2 Datasets 

Related to Naples’ city, we have available, as open data, 

cartographic data and LiDAR data. The data were obtained by the 

national cartographic portal (Ministero dell’Ambiente e della 

Tutela del Territorio e del Mare, 2019). 

 

1.2.1 Accuracy of data: the objective of this investigation is 

to understand to what extent can LiDAR-derived products be 

used to model building heights and roof details.  To achieve this 

cartographic data at 1:10000 scale and LiDAR DTM and DSM 

datasets with 1 m ground sampling distance (GSD) were used. 

The cartographic data in ESRI Shapefile format contained 

building footprints and attributes regarding height above sea level 

of building foot and heaves.  Digital models were obtained with 

LiDAR aerial survey surveyed in December 2009, with a point 

density of ~4 points/m2, and accuracy of ~15 cm (1σ). This 

allowed to create a dense (level 6) digital terrain/surface model 

of, i.e. with vertical and horizontal expected accuracy of 0.3 m 

(Brovelli et al., 2012) 

 

The building footprints and heave heights were available as 

shapefile data at 1:10000 scale. This means that geometric 

vertical accuracy is expected to be 2 m (1σ), thus related to a level 

2 DSM accuracy (Brovelli et al., 2012).  Comparing this with the 

DTM and DSM expected accuracy shows that the most accurate 

product is expected to be the digital terrain models. 

 

It might seem like a trivial task, but variety and accessibility of 

the data, which is different for each of the five cities considered, 

increase complexity. It is worth noting that geographic data 

harmonization is among the goals of regional and national (and 

European) policies; there is still a lot of archived data that contain 

information that can enrich urban models; therefore, ETL will 

continue to be a very important aspect for this topic. In the 

methodology we will present only the city of Naples. 

 

 

2. METODOLOGY 

In order to extract information of buildings height, we used the 1 

meter resolution LiDAR derived Digital Surface Model (DSM) 

and Digital Terrain Model (DTM) from which we calculate 

normalized DSM  (nDSM) as the difference between DSM and 

DTM. The initial step is to extract a raster with difference 

between DSM and DTM to have a normalized height map that 

theoretically has a value of zero over bare ground and roof height 

over buildings. This is then converted to a regularly spaced point 

cloud representing the center of the cell.  We therefore obtain a 

distribution of values of height every 1 m2.  

 

Intersecting each point grid with the polygons described in the 

cartographic dataset, that represent the footprint of buildings, we 

obtain both a distribution of height values at heaves for each 

building – using the lowest points inside the polygon – and the 

distribution of heights that represent the roof shape.  These values 

can be used to (i) obtain values of building elevation in the 

cartographic dataset (ii) carry out statistical surveys aimed at 

estimating the type of roof (main objective of this work), and (iii) 

analyse residuals and discuss applicability of assigning building 

height from lidar-derived raster height models.   

 

Because we are going to compare height of buildings measured 

at the heaves, we assign LiDAR-derived height of a building as 

the median of the lowest 20 points in each building footprint. The 

use of the median allows to have a value that is more robust in 

case of outliers than using the mean. Outliers can consist in points 

belonging to wall reflections or higher roof parts.  

 

 

 

(a) (b) 

Figure 2. The LiDAR DTM (a) and  DSM (b) of Naples 

 

 

3. RESULTS AND DISCUSSION 

A total of ~11 million points, i.e. cell centers, overlap building 

footprints. Residuals between from lidar-derived raster height 

models and heights of buildings from cartographic shapefiles 

attributes are shown in Figure 4 below. It was calculated by 

finding the lowest roof-point in each polygon representing the 

building footprint, and subtracting it from the building absolute 

height at heave, derived from adding building height at heave to 

Z value of polygon to get height above sea level. LiDAR heights 

are referred to geoid height above mean sea level. Results show 

differences in all buildings analysed (15000 buildings). 

Distribution of residuals between cartographic building heights 

and LiDAR-derived heights have an average of -1.3 m and a 

standard deviation of 4.15 m. This result is in line with accuracy 

that is expected from the 1:10000 scale, considering higher 

residuals due to errors defining the lidar point in the roof that 

represents heave heights.  
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Figure 3. frequency of building heights as recorded in 

cartographic sources 

 

 
  Figure 4. Residuals frequency distribution calculated by adding 

building height to ground height above sea level and 

subtracting lidar height 

 

Most points are on roofs, but some also are from facades and 

walls, as the LiDAR point density used was high enough to also 

reflect significantly from walls as is shown in Figure 5.  

 

      
Figure 5.  Castel San Elmo Naples with detail in the left of 

points on the wall. 

 

The planar projection of points will have a 1 m step, but the 3D 

representation will increase the reciprocal distance depending on 

the slope of the surface that was sampled by the grid’s cell center. 

Spurious points are also visible as the fall in the building 

footprint, but do not belong to the roof or façade. This can be 

cleaned out by one of the many outlier filters that are available 

such as discussed in Pirotti et al., (2018). 

 

3.1 Extraction of single buildings with connected 

components 

Connected component analysis is used in this work to try and 

isolate single buildings. The connected component labelling 

algorithm was implemented in the computer vision community 

to detect connected elements in binary digital images 

(Dillencourt et al., 2002). 

 

Application over unstructured point clouds has been investigated 

diffusely to support segmentation methods and object detection. 

Many methods have been implemented in various software. We 

have used CloudCompare and applied its version of connected 

components labelling. The tool provides two parameters for 

tuning, the octree level and the minimum number of points per 

segment. Higher octree levels tend to under-connect, thus 

splitting point clusters belonging to the same building, whereas 

lower octree levels tend to over-connect, thus grouping large 

chunks of points also from multiple buildings. Results are shown 

in Figure 6 below.   

 

 

 
 

 
Figure 6. Top and perspective view of connected components 

results. 

 

A triangulation process over points, with a maximum edge length 

filter, can isolate building roofs partially as shown in Figure 7 

below. The regularly spaced points help in defining the 

parameters for the connected components, as we know that points 

in each building are spaced at 1 m on the horizontal plane. Further 

cleaning of the dataset can be done by removing isolated triangles 

or very small triangles that are created over sparse points. A 

previous cleaning step can be applied to remove outliers, i.e. 

isolated points. 
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Figure 7. Triangulated surfaces over connected components. 

 

 

4. CONCLUSIONS 

The work described shows that significant information is present 

in commonly used LiDAR-derived products, i.e. dense DTMs 

and DSMs. Conversion of the unstructured point cloud to a 

regularly spaced grid helps in providing space-related 

information to support removing isolated parts that do not belong 

to roofs. The point sets have an id related to the building footprint 

thanks to spatial intersection and are thus available for further 

modelling of roofs to CityGML schema, and support LOD2 

object creation. This last step is not the focus of this work, but 

several investigations are available in literature. Added value of 

LiDAR surveys over urban areas is a known fact, and this work 

further supports the idea that dense DTM/DSMs can be very 

important for urban city modelling.  

 

Future work will take further steps into classification of roof 

types by taking descriptive features from each set of points 

belonging to a single building. Contextual 3D information, such 

as the normalized eigenvalues of the 3D tensor tensor matrix can 

be used to provide linearity, sphericity and planarity indices for 

each point, and then using these information for example for 

supervised classification of roof types. After having an idea of 

the roof type, primitive objects representing each type can be 

fitted to the point set to determine individual parameters of each 

roof, and then merge the roof model to the LOD1 model, creating 

a LOD2 object in CityGML. 
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