
GROUND POINT FILTERING FROM AIRBORNE LIDAR POINT CLOUDS USING DEEP
LEARNING: A PRELIMINARY STUDY

Eric Janssens-Coron1,2∗, Eric Guilbert1

1 Dept. of Geomatics Sciences, Laval University, Québec, G1V 0A6 (QC) Canada
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ABSTRACT:

Airborne lidar data is commonly used to generate point clouds over large areas. These points can be classified into different categories
such as ground, building, vegetation, etc. The first step for this is to separate ground points from non-ground points. Existing methods
rely mainly on TIN densification but there performance varies with the type of terrain and relies on the user’s experience who adjusts
parameters accordingly. An alternative may be on the use of a deep learning approach that would limit user’s intervention. Hence,
in this paper, we assess a deep learning architecture, PointNet, that applies directly to point clouds. Our preliminary results show
mitigating classification rates and further investigation is required to properly train the system and improve the robustness, showing
issues with the choices we made in the preprocessing. Nonetheless, our analysis suggests that it is necessary to enrich the architecture
of the network to integrate the notion of neighbourhood at different scales in order to increase the accuracy and the robustness of the
treatment as well as its capacity to treat data from different geographical contexts.

1. INTRODUCTION

Airborne lidar data is now a common technology used to gen-
erate digital surface models over large areas with a high density
of points. These points can be classified into different categories
such as ground, building, vegetation, etc to produce 3D models.
The first step in this process is the generation of a digital terrain
model supporting 3D objects.

The DTM is built from ground points obtained from the whole
point cloud. Hence the quality of the DTM directly depends
on the quality of the algorithm selecting the points. Oldest ap-
proaches rely on geometrical and statistical indicators but ground
filtering methods perform differently on different types of ter-
rain. Methods based on the construction and the densification
of a triangulated irregular network (Axelsson, 2000) appear to
be the most robust to all environments and are the most com-
monly used. Overall, these methods can give good classification
rates in benchmarks but, considering the large amounts of data
to process, researchers looked for different approaches based on
machine learning.

Machine learning approaches can integrate and handle more pat-
terns, leading to more sophisticated and more efficient classifiers.
Although they can provide better results, their improvements re-
main marginal. The reason is that patterns still rely on statistical
and geometrical indicators, facing the same difficulties regarding
the different types of surface.

In these last few years, deep learning methods became popular
approaches for semantic segmentation of datasets. Most methods
apply to images. These methods can also apply to point clouds
but many rely on voxelisation: space is divided in voxels and
each voxel is assigned a value according to the points it contains.
Hence such methods do not work on a point cloud but on an ap-
proximation. They also demand a lot of resources since they re-
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quire a complete voxelisation of the 3D space, leading to many
empty voxels.

Recently, a new model, PointNet, was developed that can han-
dle directly point clouds (Qi et al., 2017a). The authors applied
PointNet to classify or segment 3D objects or indoor scenes. In
these examples, point clouds remain more or less structured and
can form regular clusters of points and geometrical shapes. On
the opposite, airborne lidar points are highly unstructured and, in
natural environments, present little regularity. Hence, this paper
introduces preliminary results in classifying airborne lidar point
clouds. Our objective is to assess PointNet ability in selecting
ground points. Since existing methods perform differently in dif-
ferent environments, we assess PointNet in both urban and forest
environments.

The remaining of the paper is organised as follows: the next
section presents existing approaches on ground point selection.
Section 3 presents PointNet and the set of experiments that were
conducted. Section 4 presents the results with a discussion on the
limitations of PointNet. Last section presents concluding remarks
and directions for future works.

2. EXISTING WORKS

2.1 Geometrical approaches

The first methods for ground point selection were based on ge-
ometrical indicators. They would look at indicators such as the
elevation (lowest points are most likely on the ground), slope or
elevation difference (neighbouring points on and above grounds
may show a rapid change of elevation) and curvature. (Meng et
al., 2010) provides a classification of these methods.

Among these methods, the most commonly used are based on
TIN densification (Axelsson, 2000). They consist first in select-
ing the lowest point in each cell of a grid covering the area of in-
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terest. These points form an initial triangulation and other points
close enough to the TIN are added iteratively.

Interpolation methods and contour methods (based on active con-
tours) build a surface by interpolation or approximation of the li-
dar points and iterate to reduce the residue. Interpolation can be
linear or based on splines. The method can be refined to consider
different scales: (Evans and Hudak, 2007) makes use of thin plate
splines to compute a curvature at different scales.

Segmentation methods cluster points into regions with homoge-
neous slope or elevation. These methods are mainly used in ur-
ban environments where regions are easier to characterise. Mor-
phological methods apply opening operations (a combination of
erosion and dilation operations) on the points. Directional scan-
ning filters process points along a scan line, looking at only one
direction. Methods based on statistical analysis were also devel-
oped (Chen et al., 2017). They mainly rely on the computation of
skewness.

Among these approaches, some, such as TIN densification, di-
rectly identify ground points while others, mainly belonging to
interpolation and morphological methods, generating a raster or
grid DTM and do not always yield a classification. Overall,
they do not perform equally according to different environments.
While best scores are obtained in urban areas, they are usually
less efficient in natural environments such as: rough terrain with
steep slopes and terrain with low vegetation where the difference
with the ground is difficult to make and forested areas where few
points reach the ground (Meng et al., 2010). However, citing
(Chen et al., 2017), ”filters that work well in forest (urban) areas
may struggle in urban (forest) areas.”

Methods in the literature are usually benchmarked on ISPRS ref-
erence datasets. These datasets are raw lidar point clouds ob-
tained in different environments. Overall, methods that give the
best results are based on TIN densification, interpolation and
morphology. However, details of the experiments and parameter
settings are not always given and results for a same method on a
same dataset can greatly vary. For example, for progressive trian-
gulation on ISPRS dataset 1, (Bigdeli et al., 2018) found an error
of 10.21% while (Hui et al., 2019) obtained an error of 28.21%.
Indeed, results are sensitive to parameter settings and parameters
are usually adjusted according to different variables such as the
point density and the type of terrain.

2.2 Machine learning approaches

While ISPRS datasets are low density point clouds (below 1 point
per square metre) over a few square kilometres, current ALS sys-
tems can acquire point clouds at a much higher density, above 20
points per square metre on much larger areas. Hence, in the last
decade, some researchers explored machine learning approaches
to define new descriptors and automatically adjust the parameters.
Machine learning is already commonly used for semantic classi-
fication of points. Much of this work applies to indoor environ-
ment and terrestrial laser scanning for classifying urban features
or buildings. Among the methods developed for aerial lidar data,
some resample lidar points into a regular grid (Lodha et al., 2006)
or into voxels (Wang et al., 2018) or make use of an orthoimage
providing extra information (Chehata et al., 2009).

Machine learning relies on the definition of geometrical features
on each point computed in a small neighbourhood such as the
slope, the planarity or the difference of elevation. Some meth-
ods also include the intensity. On top of that, machine learning
approaches also apply clustering approaches to define planar seg-
ments and further features on these planar segments (Lu et al.,

2009). Most common techniques are conditional random field
(Lu et al., 2009, Niemeyer et al., 2012), support vector machines
(Mewhort, 2013) and random forest (Ni et al., 2017) but also ad-
aBoost and bagging (Nourzad and Pradhan, 2014).

In most cases, these techniques are applied to urban environ-
ment with the objective of classifying ground, vegetation and
buildings. Hence, point clusters are mainly defined by plane re-
gions obtained by graph-based segmentation, growing regions or
RANSAC. (Lu et al., 2009) and (Ni et al., 2017) also consider
natural environments. (Lu et al., 2009) define disk-based feature
regions while (Ni et al., 2017) define rough surfaces and scattered
points on which features are also computed.

Overall, machine learning brings an improvement to previous ge-
ometrical approaches since features defined on points and clus-
ters combine the different characteristics computed with earlier
approaches. Performance of the method depends on the choice of
features and most works focus on urban areas. In the remaining
of the paper, we assess a deep learning approach which would
have the ability to learn features during the training process.

3. AIRBORNE LIDAR POINT CLOUD
CLASSIFICATION WITH DEEP LEARNING

3.1 The PointNet architecture

In recent years, new classification techniques based on deep
learning have emerged for recognition of discrete 3D objects and
terrestrial / mobile lidar data. The first methods were inspired by
methods used on 2D images and require a voxelisation of space
(Maturana and Scherer, 2015). Voxel values are defined accord-
ing to the points found in each voxel. As such, input data are
downgraded and, since points do not occupy the whole space,
this approach leads to generating many empty voxels adding ex-
tra computation load. An alternative was proposed by (Qi et al.,
2017a) with PointNet.

PointNet is a convolutional neural network (CNN). It uses con-
volutions to generate new features for each point and highlight
patterns in the data. The main specificity of PointNet is to deal
directly with each point of the point cloud without resorting to
voxelisation. The second interest of PointNet is to propose so-
lutions to two fundamental problems related to point clouds: the
absence of ordering between the points and the dependence on
rigid transformations. A third feature of PointNet is the division
of the point cloud into blocks along a regular grid. These blocks
are the expression by PointNet of the notion of neighbourhood.
Although PointNet divides the cloud of points into blocks, this
division is to be distinguished from that of point cloud voxelisa-
tion approaches that use it to generalise the information in each
of these blocks.

The PointNet architecture consists of 3 steps (Figure 1). The
first step takes a set of points defined by their xyz coordinates
and computes local features to each points. Features are added
through a multilayer perceptron (MLP). The first step can also
include mini-nets of neurons (net transforms or T-nets) that make
the points independent from rigid transformations (translations
and rotations). At the end of this step, each point is described by
a vector of 64 features.

The second step computes global features over all the points. It
uses for this a multilayer perceptron followed by a max pool-
ing. The max pooling makes the point cloud invariant to point
order. The information is added to each of the local features in
the block forming a total of 1088 features. The final step of Point-
Net effectively performs the classification, producing a tensor of
probabilities of belonging to each class for each point.
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Figure 1: PointNet architecture. MLP stands for multi layer perceptron.Alignment blocks are optional

3.2 Aerial lidar point classification

An aerial LiDAR data acquisition project does not necessarily
or even rarely includes images. Therefore, the main information
available is the xyz coordinates of the points to which the inten-
sity can be added, even though this characteristic is still difficult
to apprehend. The areas covered in a survey can reach tens of
thousands of square kilometres, yielding huge volumes of data
(hundreds of GB for billions of points).

To facilitate storage and because of current software limitations,
point clouds are usually cut into tiles of reasonable size, in our
case, 1 km2 tiles. The amount of points per tile depends on the
density of the point cloud. This density varies greatly even within
a project depending on the sensor but also on variations in the
speed of the aircraft, morphology of the territory, etc. Swath over-
laps also artificially change the density. For example, in our case
studies, the advertised density is conservative at 4 points/m2 but
the actual density in a tile can vary from 4 to 50 pts/m2 since a
pulse can have several returns. Hence, the number of points per
tile can vary between 10 and 22 million points.

We used two datasets:

• A point cloud of eastern Montreal collected by Xeos Imag-
ing Inc. in 2015 openly available online1 with a calculated
average density of 16pts/m2 divided in 12 tiles. Coordinates
are in MTM7. In this dataset, 43.78% of the points are clas-
sified as ground, meaning that the ratio of ground points is
rather balanced.

• A point cloud located in a dense forest area in southern Que-
bec province with an advertised density of 4pts/m2, repre-
senting 195 million points provided by Xeos Imaging, Inc.
Coordinates are in MTM8 grid system. The point ratio is
very unbalanced with 79.11% as ground.

3.3 Data preparation

PointNet code is available online2. The code is in Python and
runs with TensorFlow. PointNet takes in input a set of points
arranged in batches. These batches are further divided in blocks.
Each block contains 4096 points.

Batches were prepared by dividing each tile in blocks and then by
grouping blocks in batches. Three approaches were considered
to define the blocks. The first approach consists in simply taking
4096 consecutive points of the tile as they are recorded in the file.
It means that there is no spatial arrangement between the points
and that points in a block are not necessarily close to each other.

1http://donnees.ville.montreal.qc.ca/dataset/lidar-aerien-2015
2https://github.com/charlesq34/pointnet

The second and the third approach consist in partitioning the tile
in blocks of approximately 4096 points. Block size is computed
based on the point density, e.g. for a density of 16 pts/m2, each
block must be 16 m side. This represents 3969 blocks for one tile.
Since the density varies inside a tile, blocks do not contain exactly
4096 points. In the second approach, points are duplicated or
deleted randomly to get the right number. In the third approach,
we take the first 4096 points and if some are missing, the first
ones are duplicated. While there is no explicit spatial relations
between the points, they are still arranged so that points in a block
are close to each other.

Points in input can be defined by their xyz coordinates only or
by adding other features computed during the preparation stage.
Hence, we considered the three coordinates x, y, z and the inten-
sity I . Coordinates can be simply translated to a common origin
within the tile or normalised by using maximum and minimum
coordinates to express all coordinates in a block on an interval
[0, 1]. In order to avoid excessive deformations due to height
variations between tiles, normalisation is done over the whole
tile. Normalisation of the intensity was done by dividing each
value by the maximum possible intensity on the whole dataset in
order to bring it below 1.

The urban point cloud is composed of 12 tiles. Among these, 9
were used for the learning phase and 3 for the evaluation phase.
The forest point cloud contains 20 tiles. We used 12 tiles for the
training phase and 8 for the evaluation phase. Training was done
independently on each dataset.

4. RESULTS AND DISCUSSION

The configuration used to perform our tests is composed of a 7th
generation 3.8GHz I7 processor, 64 GB of RAM and a Quadro
P4000 graphics card. The processing times with this configu-
ration are about 16.5 hours for the Vanilla version of PointNet
(without the T-nets) and 30.5 hours for the version with the T-
nets.

The following hyperparameters were considered: the number of
epochs, the batch size and the learning rate. While a batch size
of 32 is more commonly found in the literature, we took a batch
size of 16 mainly for technical reasons. Tests have been con-
ducted on the learning rate value and best results were obtained
for 0.001. Nonetheless, at this stage, We did not observe big vari-
ations with other values. In all cases, accuracy converge in less
than 75 epochs. Hence all the tests were performed with this con-
figuration.

We present results obtained for several tests assessing the influ-
ence on the number of features in input and the definition of
blocks in each tiles in Table 1. Last column measures the total
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Test Attributes Returns Block T-nets Accuracy
1 xn, yn, zn, In Last First 4096 No 76.96%
2 xt, yt, zt, xn, yn, zn, In Last No partition No 55.72%
3 xt, yt, zt, xn, yn, zn, In, R#, NbR All First 4096 No 81.4%
4 xt, yt, zt, xn, yn, zn, In, R#, NbR All Random No 78.01%
5 xn, yn, zn, In Last Random No 76.15%
6 xt, yt, zt, xn, yn, zn, In Last First 4096 No 75.65%
7 xn, yn, zn, In Last First 4096 Yes 77.99%

Table 1: Results obtained on the urban dataset. Column block and alignment indicate how blocks were built and whether alignment
using the T-Nets was done. Point selection indicates how points were selected to build blocks.
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Figure 2: Accuracy and loss for training and evaluation of the urban point cloud with different settings
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accuracy defined by the number of points correctly classified di-
vided by the total number of points.

We also present the learning curves and loss curves on Figure 2.
We represent for each iteration the accuracy and loss computed
on training data and on evaluation data. The loss is used to mea-
sure the inconsistency between a predicted value and the actual
label. It is a non-negative value, such that the robustness of the
model increases as the loss decreases. We used the sigmoid cross-
entropy method as defined in PointNet. It is commonly used for
multi-label classification since it is independent for each label,
meaning that the loss computed for every class is not affected by
other component values.

All tests included normalised coordinates and intensity. Tests
were first conducted on the urban dataset. They were done using
both last returns only and all returns since both can be done in
urban areas. In the second case, we added the number of returns
and the number of the return to each point. We also considered
both translated coordinates and normalised coordinates as done
in existing tests for PointNet conducted in indoor environments
(Qi et al., 2017a).

At first sight, we can notice significant differences in the pre-
diction accuracy between tests with a difference of 23.31 points
of percentage between the highest and lowest classifications. It
appears immediately that the method without partitioning (test
2) is not appropriate. As seen on Figure 2, the network is not
able to learn properly. Indeed, in test 2, points are arranged
along swathes and points in the same tile can come from differ-
ent swathes. While classification is supposed not to be affected by
point ordering, points still need to be spatially organised to com-
pute significant global features. Completing blocks with points
taken randomly also yields lower results than taking the first 4096
as shown by tests 1 and 5 and tests 3 and 4 where the difference
is around 4 points.

We note that best results were obtained when considering all re-
turns (tests 3 and 4). However, it does not lead to better classify-
ing points on the ground since all points that are not last returns
are correctly classified as non ground. Increasing the number of
attributes in input points did not have much impact and results in
test 6 are similar, with even slightly inferior results.

Finally, we compared the classification with and without the T-
nets (test 7). As mentioned by (Qi et al., 2017a), T-nets are
used to align attributes to make them invariant to affine trans-
formations, having a more regular learning curve. The use of
T-nets increased the classification of 1 point but significantly in-
creasing computation time. It also slightly smooth the training
and loss curves (Figure 2). Overall, the accuracy obtained on
the data is slightly lower than that obtained by (Qi et al., 2017a)
when segmenting indoor scenes where the average accuracy was
of 78.62%.

When studying the classification produced by PointNet, we see
that the network tends to commit many points that were not clas-
sified on the ground in the reference data. As shown in Figure 3,
most points located close to the ground were classified as ground.
We see two issues for this: first, referenced data were classi-
fied in order to produce a DTM with the objective of minimising
commissions. This may introduce a bias in the learning process.
However, the network still tends to classify too many points on
the ground, relying too much of the elevation attribute. In Figure
3 on the right, some points above the ground have been misclas-
sified while the reference was correct.

Figure 3: Comparison between reference points (above) and clas-
sified points (below). Blue represents ground points

Test Attributes Alignment Accuracy
8 xn, yn, zn, In No 82.76%
9 xn, yn, zn, In Yes 82.01%

Table 2: Results obtained on the forest dataset. Only last returns
were considered.

PointNet was also executed on a second dataset in a forest envi-
ronment. Results are presented in Table 2 with learning and eval-
uation curves in Figure 4. Blocks were defined with the third ap-
proach since it yields better classification. Accuracy seems much
higher than in urban area however, curves in Figure 4 clearly
show that the algorithm was not able to learn from the data. It
starts close to 80% and does not evolve where a normal learning
curve should increase regularly before it plateaus. We see again
that the alignment did not have much influence on the result but
it clearly smoothed the evaluation loss curve.

An example of classification is shown on Figure 5. In that case, it
appears that points were all classified as non ground. Like many
ground points were missing in the reference, it seems that the
network had difficulties to learn between ground and non-ground,
because of the confusion with the low vegetation.

These tests show that the network was not yet able to learn prop-
erly to classify points. While in urban area, it tends to classify too
many points as ground points, in forest area, it omits too many
points. The forest area contained more points on the ground but
they were concentrated in open areas. Point classification de-
pends on the size of the blocks and blocks were probably too
small for the network to identify a clear pattern for points on the
ground since they are often mixed with low vegetation.
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Figure 4: Accuracy and loss for training and evaluation of a forest point cloud with and without alignment

Figure 5: Comparison between reference points (above) and clas-
sified points (below). Blue represents ground points

5. CONCLUSION AND FUTURE WORKS

In this paper, we applied PointNet, a deep learning model, to clas-
sify aerial lidar point clouds. PointNet has the advantage of pro-
cessing directly the points without voxelisation. Our current tests
were able to provide results in line with existing approaches how-
ever they are not satisfactory. Loss curves show a lack of robust-
ness. As mentioned, one reason was that, in datasets provided
for training, quality was defined by the lack of commissions and
many ground points had been omitted.

In order to improve the robustness of the method, the sigmoid
cross-entropy method loss calculation should be modified to in-
crease the loss when the network does commissions. In other
words, we want to further penalise the neural network when it
classifies a non-ground point as ground than when it classifies a
ground point as non-ground.

Nonetheless, further investigation regarding data preparation
(mainly normalisation and batch definition) need to be conducted
since the approach so far lacks of robustness, especially in forest.
Existing methods are applied for object classification or for seg-
mentation of an indoor scene where normalisation is applied to
the whole scene. In an open environment, different kinds of nor-
malisation, along the whole point cloud or per tiles, rather than in
each block or batch may be tested since the scene does not have
natural boundary. Furthermore, features considered in the classi-
fication can vary depending on the context. Hence, data prepara-
tion may be conducted and training may be performed separately
for different types of terrain (agricultural and forest areas, step
terrain, etc.).

Finally, our analysis suggests that it is necessary to enrich the ar-
chitecture of the convolutional network to integrate the notion of
neighbourhood. Currently, neighbourhood is only implicitly con-
sidered within blocks. Blocks group together points in a batch
that are spatially close to favour computation of global features
from points which are close. However, PointNet is not yet able
to handle notions of scale to compute features at different resolu-
tions and define some clusters as existing geometrical and ma-
chine learning approaches are able to do. Some authors have
considered these elements by explicitly defining a neighbourhood
for points (Engelmann et al., 2017, Qi et al., 2017b) at different
scales. Neighbourhoods are defined by k-nearest neighbours or
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by a distance from a point. These approaches increase further the
computation and storage cost and specific spatial access meth-
ods will have to be implemented, especially in natural environ-
ments where point distribution is more unstructured and clusters
are more difficult to define.
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