
A Method of Urban Road Network Extraction Based on Floating Car Trajectory Data 

Chunlei Mi 1, 2,  Feng Lu 1, 2, 3, 4 * 

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural 

Resources Research, CAS, Beijing 100101, China- (mcl, luf)@lreis.ac.cn 

2 University of Chinese Academy of Sciences, Beijing 100049, China 
3 Fujian Collaborative Innovation Center for Big Data Applications in Governments, Fuzhou 350003, China 

4 Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, 

China 

KEY WORDS: floating car trajectory data, road network extraction, adaptive radius centroid drift clustering, WaveCluster, GPS data 

ABSTRACT: 

With the gradual opening of floating car trajectory data, it is possible to extract road network information from it. Currently, most road 

network extraction algorithms use unified thresholds to ignore the density difference of trajectory data, and only consider the trajectory 

shape without considering the direction of the trajectory, which seriously affects the geometric precision and topological accuracy of 

their results. Therefore, an adaptive radius centroid drift clustering method is proposed in this paper, which can automatically adjust 

clustering parameters according to the track density and the road width, using trajectory direction to complete the topological 

connection of roads. The algorithm is verified by the floating car trajectory data of a day in Futian District, Shenzhen. The experimental 

results are qualitatively and quantitatively analyzed with ones of the other two methods. It indicates that the road network data extracted 

by this algorithm has a significant improvement in geometric precision and topological accuracy, and which is suitable for big data 

processing. 

1. INTRODUCTION

In recent decades, the rapid development of urban construction, 

whether it is urban expansion or internal functional restructuring, 

will cause changes in urban road network. The traditional road 

network renewal mainly through the professional surveying and 

Mapping Department field survey, remote sensing image 

interpretation and digitization two ways, not only the cost of 

human and financial resources investment is high, the 

professional and technical requirements of practitioners are high, 

but also the acquisition period is long, the management workload 

of late renewal is large, it is difficult to meet the current urban 

development of road network data low-cost, high timeliness 

requirements. Therefore, there is an urgent need for a low-cost, 

short update cycle of automatic access to road network data. With 

the gradual opening of floating car trajectory data, it is possible 

to extract geometric and topological information of road network 

from floating car trajectory data and build and update road 

network automatically in real time. 

At present, many scholars have carried out a lot of research in 

this field. We adopt the terminology introduced in recent surveys 

by Biagioni and Eriksson(Biagioni and Eriksson, 2012) and 

Ahmed et al.(Ahmed et al., 2015), who also describe and 

compare several approaches in great detail. Even so, for better 

classify the algorithms, we divide them into three categories 

according to the main principles of them. One is the method of 

clustering trajectory points and lines(Davies et al., 2006; 

Edelkamp and Schrödl, 2003; Kuntzsch et al., 2016; Li et al., 

2019; Worrall and Nebot, 2007). The road components are 

obtained by spatial clustering of GPS, and then they are 

connected according to different rules. Another is the method of 

graph theory and image processing(Biagioni and Eriksson, 2012; 

Chen and Cheng, 2008; Jiang et al., 2012; Steiner and Leonhardt, 
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2011). The trajectory data are transformed into 2D raster images 

according to geographical location, and the road skeleton is 

extracted by different thinning methods. These methods can 

improve the speed of road network extraction, but they are often 

difficult to deal with at complex intersections. The third method 

is incremental merging of trajectories(Ahmed and Wenk, 2012; 

Karagiorgou and Pfoser, 2012; Karagiorgou et al., 2013; Li et al., 

2015). that is, finding common segments among multiple trips, 

mainly based on spatial proximity and similarity of additional 

features such as heading. Tracks are sequentially integrated into 

an initially empty map, leading to modifications to the existing 

network whenever a new track is inserted. 

Besides extracting geometric and topological information, some 

researchers also attempt to extract other spatial features of road 

networks(Cao and Krumm, 2009; Chen and Krumm, 2010; Deng 

et al., 2018; Guo et al., 2007; Schroedl et al., 2004; Zhang et al., 

2010), such as the width and number of lanes per road, turning 

restrictions and other traffic-related features. 

In summary, although many research achievements have been 

made in road network extraction, there are still many problems in 

current extraction methods: 1) Most algorithms extract road 

network information by setting a unified threshold, but the 

density of vehicle trajectory data is very different, which makes 

it difficult to apply; 2) Many algorithms only use vehicle 

trajectory shape, without considering the direction of the 

trajectory, affecting road topological accuracy ; 3) Most of the 

road network information extracted by the algorithm contains too 

much redundant data and is not easy to simplify. Therefore, this 

paper designs an adaptive radius centroid drift clustering method, 

which can automatically adjust clustering parameters according 

to trajectory density and road width and realize road topological 

connection by using trajectory direction. 
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2. METHODOLOGY

This paper designs an anti-noise and easy clustering method, 

which can effectively extract the road network using floating car 

trajectory data (Figure 1). The specific steps are as follows: 1) 

Preprocessing the original floating car trajectory data, including 

projection coordinate transformation, calculation the moving 

direction of two neighboring points and removal of stagnation 

points. 2) For the processed trajectory point data, the improved 

centroid drift clustering algorithm is used to extract the network 

skeleton points (clustering centers). Traditional centroid drift 

clustering algorithm uses fixed radius to cluster, which is difficult 

to apply to roads with different widths. This paper improves the 

traditional algorithm and realizes the adaptive adjustment of 

clustering radius according to road width. 3) Determine the 

direction of road network skeleton points. Wavelet clustering 

algorithm is used to cluster the direction set of the clustering 

trajectory point set (obtained from step 2). The clustering centers 

of direction set are calculated and assigned to the corresponding 

road network skeleton points (clustering centers). 4) Road 

network skeleton point connection. According to the clustering 

radius and skeleton point direction, the road network skeleton 

points are connected recursively to generate road network data. 

Figure 1. The flow chart of road network extraction 

2.1 Data Preprocessing 

Because the floating car uploads data at intervals, only one point 

of data is uploaded near the corner. Which results in the dispersed 

direction of track points at road corners (this is the main direction 

is not obvious). In order to solve this problem, this paper defines 

the direction from one data upload point to the next time interval 

data upload point as the interval moving direction of the point. 

There are two directions for each floating car trajectory point, 

instantaneous moving direction 𝑉𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 and interval

moving direction𝑉𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. The absolute value of the difference

between two directions on the straight road ∆𝑎 =
|𝑉𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 − 𝑉𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙| is analyzed to obtain the maximum

value ∆𝑎𝑚𝑎𝑥  of ∆𝑎 which can reflect the characteristics of the

straight road.  Add a field (straight_flag) to the original data, if 

∆𝑎 ≤ ∆𝑎𝑚𝑎𝑥 then 𝑡𝑟𝑎𝑖𝑔ℎ𝑡_𝑓𝑙𝑎𝑔 = 1  , otherwise

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡_𝑓𝑙𝑎𝑔 = 0 . In this way, the 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡_𝑓𝑙𝑎𝑔 = 1 

floating car trajectory point set retains only the road extension 

direction at the intersections. (Figure 2).  

Figure 2. The direction of 𝑉𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠 and 𝑉𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

(2) Removal of stagnation points 

When a floating car is waiting at a traffic light intersection or 

parking in congestion, it will generate many repetitive (or very 

small location difference) data points nearby, which are of little 

significance in road network extraction and will increase the 

amount of calculation. Therefore, the distance between a 

trajectory data point and the previous trajectory data point is 

calculated. If the distance is less than 5 m (about GPS civilian 

precision), the trajectory data point is deleted. In the addition, the 

original data is geographic coordinate system, in order to 

facilitate calculation, it is converted into projection coordinate 

system. 

2.2 Extracting Skeleton Points of Road Network 

In this paper, an adaptive radius trajectory point clustering 

method is proposed. The clustering radius is adaptively adjusted 

according to the road width by using the ratio of the area of 

clustering trajectory point set to the area of clustering circle. 

(1) Calculating the Area of Trajectory Point Set 

In order to improve the calculation efficiency, a method of 

calculating the area of trajectory point set with only time 

complexity 𝑂(𝑛) is designed. For a set of trajectory points, the 

maximum 𝑥𝑚𝑎𝑥  and minimum 𝑥𝑚𝑖𝑛  abscissa coordinates, the

maximum 𝑦𝑚𝑎𝑥 and minimum𝑦𝑚𝑖𝑛 longitudinal coordinates and

the number of trajectory points 𝑛 are calculated. In this way, a 

rectangle 𝑸  can be determined by point (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛)  and

point(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥), and then the rectangle 𝑸 is divided into grids

(Figure 3). The size of each grid is as follows: 

{

 

 𝑘 = ⌊
𝑛1/2

2
⌋ + 1

𝛥𝑥 =  
𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑘

𝛥𝑦 =
𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛

𝑘

  (1) 

This partition ensures an average of 1 to 4 points in each grid. 

The number 𝑁𝑖𝑗(1 ≤ 𝑖, 𝑗 ≤ k) of trajectory points in each grid is

counted, then the number 𝑚  of grids which 𝑁𝑖𝑗 ≥ ⌈
1

2
∙
𝑛

𝑘2
⌉  is

counted. This to say, if the number of trajectory points in the grid 

is greater than half of the average number of trajectory points in 

each grid, the number of trajectory points can be counted. The 

area of the set of trajectory points is 𝑆 = 𝑚 ∙ 𝛥𝑥 ∙ 𝛥𝑦. 

Figure 3. The calculation of trajectory points set’s area 
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(2) Adaptive Radius Centroid Drift Clustering 

The basic principle of trajectory points clustering is to divide the 

trajectory points set I = {𝑃1, 𝑃2, 𝑃3, ⋯ , 𝑃𝑛} into 𝑙(𝑙 ≥ 1) smaller

trajectory points set  I = {𝑆1, 𝑆2, 𝑆3, ⋯ , 𝑆𝑙}  by clustering, S𝑖 =
{𝑃𝑖1, 𝑃𝑖2, 𝑃𝑖3,⋯ , 𝑃𝑖𝑘}, S𝑖 ∩ S𝑗 = ∅, 1 ≤ 𝑖, 𝑗 ≤ 𝑙 . Then the cluster

centers𝐶𝑖(1 ≤ 𝑖 ≤ 𝑙) of each trajectory points set are obtained,

and the cluster centers G = {𝐶1, 𝐶2, 𝐶3, ⋯ , 𝐶𝑙} are the skeleton

points of the road network.  

This method can adaptively change the clustering radius 

according to the road width, and get the skeleton points set G =
{𝐶1, 𝐶2, 𝐶3,⋯ , 𝐶𝑙}  and the corresponding clustering radius set

Φ = {𝑅𝐶1 , 𝑅𝐶2 , 𝑅𝐶3 , ⋯ , 𝑅𝐶𝑙} of the road network. Firstly, given

the initial clustering radius 𝑅𝑠𝑡𝑎𝑟𝑡, the minimum clustering radius

𝑅𝑚𝑖𝑛, the step size 𝑅𝑑𝑡 of each change of the clustering radius,

the minimum number 𝑁𝑚𝑖𝑛  of clustering trajectory points,

judging whether the clustering has a stable drift distance 

threshold 𝑑𝑠𝑡𝑎𝑏𝑙𝑒  and whether the clustering result accepts the

ratio range 𝑅𝑎𝑛𝑔𝑒  between the area  𝑆𝑝𝑜𝑖𝑛𝑡𝑠  of clustering

trajectory point set and the area 𝑆𝑅 of clustering circle. If the set

𝑰 of trajectory points is not empty, a trajectory point is selected 

arbitrarily as the initial clustering center 𝑂𝑠𝑡𝑎𝑟𝑡 = (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑦𝑠𝑡𝑎𝑟𝑡)
in the set 𝑰 of trajectory points, and then the trajectory points set 

ST0 = {𝑃01, 𝑃02, 𝑃03, ⋯ , 𝑃0𝑘} in the neighborhood U(𝑂𝑠𝑡𝑎𝑟𝑡, R =
𝑅𝑠𝑡𝑎𝑟𝑡)  with radius R = 𝑅𝑠𝑡𝑎𝑟𝑡  is counted. calculate the new

clustering center of the set of trajectory points. Among them,  

{
𝑥1 =

1

𝑘
∑ 𝑥𝑃0𝑖
𝑘
𝑖=1

𝑦1 =
1

𝑘
∑ 𝑦𝑃0𝑖
𝑘
𝑖=1

 (2) 

The distance 𝑑𝑑𝑟𝑖𝑓𝑡  of between points 𝑂𝑠𝑡𝑎𝑟𝑡  and 𝑂𝑒𝑛𝑑  is

calculated. If 𝑑𝑑𝑟𝑖𝑓𝑡 > 𝑑𝑠𝑡𝑎𝑏𝑙𝑒  and the number of elements

Card(ST0) ≥ 𝑁𝑚𝑖𝑛 in the trajectory points set ST0, the clustering

is not stable. Let 𝑂𝑠𝑡𝑎𝑟𝑡 = 𝑂𝑒𝑛𝑑 , the clustering is restarted again

(Figure 4a). 

If 𝑑𝑑𝑟𝑖𝑓𝑡 ≤ 𝑑𝑠𝑡𝑎𝑏𝑙𝑒  the number of elements Card(ST0) ≥ 𝑁𝑚𝑖𝑛
in the trajectory points set ST0, the clustering is stable. The area

𝑆ST0  of the trajectory points set ST0  is calculated. If 
𝑆ST0

𝑆𝑅
∈

𝑅𝑎𝑛𝑔𝑒 , the trajectory points set ST0 is called Cluster Trajectory

Point Set (CTPS ST0), and the cluster center 𝑂𝑒𝑛𝑑 is added to the

skeleton points set of road network and the cluster radius R is 

added to the cluster radius setΦ. The directions of the skeleton 

point of road network is determined by using the CTPS ST0, and

the trajectory points in the CTPS ST0 are deleted from the total

trajectory points set. If the trajectory point set is not empty, the 

centroid drift clustering is restarted; if 
𝑆ST0

𝑆𝑅
> max (𝑅𝑎𝑛𝑔𝑒),  the 

cluster radius is enlarged R = R + 𝑅𝑑𝑡. Let 𝑂𝑠𝑡𝑎𝑟𝑡 = 𝑂𝑒𝑛𝑑 , the

clustering is restarted (Figure 4b); if 
𝑆ST0

𝑆𝑅
< min (𝑅𝑎𝑛𝑔𝑒)  and 

R > R𝑚𝑖𝑛, the radius of clustering is reduced R = R − 𝑅𝑑𝑡, the

clustering is restarted. if 
𝑆ST0

𝑆𝑅
< min (𝑅𝑎𝑛𝑔𝑒)  but R ≤ R𝑚𝑖𝑛 ,

deleting the trajectory points in the CTPS ST0  from the total

trajectory points set, the clustering is restarted (Figure 4c). 

Figure 4. The adaptive radius centroid drift clustering 

If the number of elements Card(ST0) ≥ 𝑁𝑚𝑖𝑛  in the trajectory

points set ST0 , the clustering results are usually discrete points.

The trajectory points in the ST0  are deleted from the total

trajectory points set I . If the trajectory points set I is not empty, 

the centroid drift clustering is restarted. 

2.3 Data Preprocessing 

After obtaining a CTPS 𝐒 and the corresponding road network 

skeleton point (cluster center), the direction set of the skeleton 

point should be extracted in order to connect the skeleton points. 

However, the direction data of CTPS 𝐒  is not only large in 

number but also contains a lot of noise. Therefore, a fast, strong 

anti-noise and less manual intervention clustering method is 

needed to obtain the skeleton point direction. WaveCluster is 

very suitable for the clustering of one-dimensional and huge 

trajectory point direction data sets, so this paper uses the wavelet 

clustering algorithm to cluster the trajectory point direction set to 

determine the direction of the road network skeleton 

points(Sheikholeslami et al., 1998). The specific steps are as 

follows: 

(1) Generating quantitative feature space. 

The trajectory direction of the floating car is within [0°, 360°). 
From 0° the beginning, the whole angle space is divided into 60 

even intervals. For a CTPS 𝐒, if the number of 𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡_𝑓𝑙𝑎𝑔 =
 1 elements in points set 𝐒 accounts for more than 50% of the 

total number of elements, the direction set 𝐀 of the CTPS 𝐒 is 

generated using the elements’ direction which is 

𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡_𝑓𝑙𝑎𝑔 =  1 ; Otherwise, the direction set 𝐀  of 𝐒  is 

generated using all elements’ direction. The data points in set 𝐀 

are placed in the partitioned angle space, and then the number 

C𝑖(1 ≤ 𝑖 ≤ 60)  of data points in each interval is counted

separately. Because the number of elements in each CTPS is not 

uniform, in order to set a uniform threshold for clustering, the 

quantitative feature space H𝑖 =
𝐶𝑖

𝐶
× 100 is generated by using 

the percentage of the number C𝑖 of data points in each interval to

the total number C of data points (Figure 5a). 

(2) Mean filtering. In order to better overcome the impact of noise 

on clustering, a mean filter is used to reduce the impact of noise 

on clustering in the experiment. The angle space is actually a 

cyclically continuous space, so when filtering the boundary 

position, it fills in in a periodic manner. And a new quantized 

feature space {𝐹𝑖} is generated (Figure 5b).

(3) Wavelet transform is applied. For quantized feature space 

{𝐹𝑖} , Haar discrete wavelet transform of different scales is

applied, and periodic mode is used for wavelet transform due to 

the characteristics of angle space. After discrete wavelet 

transform, approximate coefficients form a new feature space 

{𝑇𝑖} (Figure 5c).

(4) Clustering. Zeroing (denoising) is less than the given 

threshold 3.3 (the percentage of the number of data points in the 

average interval). In {𝑇𝑖}, the non-zero values are detected, which

are connected by the same cluster, and the sequence numbers of 

cluster categories are given in turn. Since the angular space is 

cyclically continuous, the {𝑇𝑖} is considered to be connected at

the beginning and end of the detection. (Figure 5d). 

(5) Construct a lookup table. Through the unique correspondence 

between the clustering trajectory point direction data and the 

quantized feature space {𝐹𝑖}, the new feature space {𝑇𝑖}, and the

clustering sequence number, the clustering category sequence 

number of each data point in the clustering trajectory point 

direction set is determined. The data points of the sequence 

number of the same clustering category constitute a clustering 

direction set of the direction set 𝐀 of the clustering trajectory 

points. 
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(6) Calculate the skeleton point direction. Through step (1) - (5), 

several clustering direction sets 𝑨𝟏, 𝑨𝟐, 𝑨𝟑, ⋯ , 𝑨𝒏  of the

direction set 𝐀  can be obtained, among which 𝐴𝑖 =
{𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑘}(1 ≤ 𝑖 ≤ 𝑛). For any clustering direction set

𝑨𝒊 , the sum vector (𝑥𝐴𝑖 , 𝑦𝐴𝑖)  of unit directional vectors

(cos 𝑎𝑗 , sin 𝑎𝑗)  of all angle elements 𝑎𝑗(1 ≤ 𝑗 ≤ 𝑘)  in 𝑨𝒊  is

calculated. The direction 𝑎𝐴𝑖 of sum vector (𝑥𝐴𝑖 , 𝑦𝐴𝑖) is regarded

as the direction of the set 𝑨𝒊 . Find out the direction of all

clustering direction sets of the set A and form a new direction set 

{𝑎𝐴1 , 𝑎𝐴2 , 𝑎𝐴3 , ⋯ , 𝑎𝐴𝑛} . That is the direction set of a skeleton

point. 

Figure 5. The calculation of skeleton point’s direction 

2.4 Connecting Road Network Skeleton Points 

The number of directions of skeleton points is used to divide 

sections. If the number of directions of a skeleton point is greater 

than or equal to 3, the skeleton point may be an intersection in 

the road network; if the number of directions is 2, it may be a 

common point in the middle of the road; if the number of 

directions is 1, it may be an end of a road. These intersections and 

endpoints can be used to divide the road network. Neighbor 

skeleton points are searched by clustering radius of skeleton 

points, and the direction of skeleton points is used to connect the 

searched neighbor skeleton points, iterating repeatedly until the 

intersection or the end of the road stops, forming a complete road. 

Specific steps are as follows:  

Calculating the maximum clustering radius 𝑅𝑚𝑎𝑥  in the

clustering radius set Φ , it is easy to know that the nearest 

connection point of any road network skeleton point𝐶𝑖 must be in

the circle of the radius 𝑅𝐶𝑖 + 𝑅𝑚𝑎𝑥of it; According to the  ∆𝑎

distribution statistics, the angle error range of searching the next 

neighboring connection point along a certain direction is within 

±∆𝑎𝑚𝑎𝑥. Arbitrarily determining a road network skeleton point

𝐶𝑖 as the starting point:

1) If the number 𝑁𝐷𝑖𝑟 of directions of the point 𝐶𝑖 is 1. In the road

network skeleton points set, along the range of this direction 

±∆𝑎𝑚𝑎𝑥 , finding the nearest neighbor connection point in the

circle of radius 𝑅𝐶𝑖 + 𝑅𝑚𝑎𝑥 . After the nearest neighbor

connection point 𝐶𝑗 is found, deleting this direction of points 𝐶𝑖 ,

calculating the direction 𝑎𝐶𝑗→𝐶𝑖  of point 𝐶𝑗  to point 𝐶𝑖 , and

deleting these directions of  point  𝐶𝑗  in the range 𝑎𝐶𝑗→𝐶𝑖 ±

∆𝑎𝑚𝑎𝑥,. Then finding the next neighbor connection point of the

point 𝐶𝑗, iterate repeatedly until a path is generated when the next

nearest neighbor connection point is not found, or the number of 

directions of the next nearest neighbor connection point is greater 

than or equal to 3 or 1. Removing empty skeleton points whose 

direction set is empty from road network skeleton points set 𝐆 

(Figure 6a). 

2) If the number 𝑁𝐷𝑖𝑟  of directions of the points 𝐶𝑖  is 2, then

search along the two directions of the points and other 

synchronization step 1 to generate a path (Figure 6b). 

Figure 6. The connection of skeleton points 

3) If the number 𝑁𝐷𝑖𝑟 of directions of the point 𝐶𝑖 is greater than

2, then starting from point 𝐶𝑖 , we recursively search for N

directions of point 𝐶𝑖  and generate M paths (M < N), because

some directions may not have adjacent points. The specific 

operation is also the same step 1 (Figure 6c). 

Repeatedly perform the above operations until there is no data 

point in the network skeleton points set G and the network data 

is output. 
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3. EXPERIMENTAL ANALYSES

3.1 Experimental Data Set and Environment 

The floating car trajectory data used in our work are the one-day 

floating car trajectory of Shenzhen on Thursday, December 1, 

2016. Floating vehicle trajectory data include vehicle ID, vehicle 

instantaneous direction, GPS time, GPS longitude and latitude, 

etc. Futian District of Shenzhen and its surrounding areas were 

selected as experimental areas. The average sampling interval of 

trajectory points was 20s. There were 64,887,486 trajectory 

points, and 38,387,446 trajectory points after preprocessing. In 

the P4/4GB/2GB/Win7 environment, experimental verification 

of the algorithm is carried out based on ArcGIS platform and 

python programming language. 

For purpose of qualitatively evaluating the experimental results, 

we selected GF-2 satellite remote sensing images for 

superposition and contrast analysis. Furthermore, in order to 

verify the experimental results, we use OSM data as the ground 

truth. Among them, non-motorized lanes are deleted from OSM 

data, and multi-lanes are not merged, so the recall rate of all 

algorithms is low. 

3.2 Explanation of Algorithmic Parameters 

(1) Selection of ∆𝑎𝑚𝑎𝑥. In the experiment, trajectory points of

straight lanes, each of which has a length greater than 5 km, were 

selected from the total floating cars trajectory data. A total of 

3,284,534 trajectory points (about 5% of the total data) were 

analyzed statistically. It was found that 75% of the absolute value 

∆𝑎 fell within 30°. When ∆𝑎 > 30°, the curve is very smooth and 

can not reflect the characteristics of the straight lane. This article 

∆𝑎𝑚𝑎𝑥 = 30° is taken(Figure 7).

Figure 7. The distribution statistics of ∆𝑎 

(2) Selection of clustering parameters. The clustering parameters 

used in the experiment are as follows: 𝑅𝑠𝑡𝑎𝑟𝑡 = 28𝑚, 𝑅𝑚𝑖𝑛 =
5𝑚, 𝑅𝑑𝑡 = 0.5𝑚, 𝑁𝑚𝑖𝑛 = 10, 𝑑𝑠𝑡𝑎𝑏𝑙𝑒 = 1𝑚, 𝑅𝑎𝑛𝑔𝑒 =
[0.5,0.6]. 𝑅𝑠𝑡𝑎𝑟𝑡, 𝑅𝑚𝑖𝑛 according to the width of common motor

lanes in China; 𝑅𝑑𝑡, 𝑑𝑠𝑡𝑎𝑏𝑙𝑒 according to the error of road

digitization; 𝑅𝑎𝑛𝑔𝑒 = [0.5,0.6]  ensuring the clustering radius 

and road width are approximately equal. 

3.3 Analysis of experimental results 

The skeleton point data (Figure 8a) and the road network data 

(Figure 8b) of the road network in the experimental area are 

obtained by using this method. Qualitative evaluation is made by 

superimposing the extracted road network data with remote 

sensing image maps and OSM vector maps (Figure 8c and Figure 

8d). It is shown that the overall results of road network data cover 

the roads in the experimental area with high accuracy; Road 

geometry and topology information can be extracted more 

accurately in the area of road intersection; And the density 

difference of track points under different road grades can be 

handled adaptively. It can extract the road data that is near and 

control the minimum width of the extraction road by setting the 

minimum clustering radius. 

In order to empirically evaluate the proposed approach, we adopt 

three indicators, namely precision, recall, and F-value, computed 

using the following formula, to quantitatively evaluate our 

method and the methods proposed by Davies et. al(Davies et al., 

2006) and Kuntzsch et. al.(Kuntzsch et al., 2016) 

{

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑜𝑎𝑑𝑠

𝑎𝑙𝑙 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑜𝑎𝑑𝑠

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑜𝑎𝑑𝑠

𝑎𝑙𝑙 𝑟𝑜𝑎𝑑𝑠 𝑖𝑛 𝑂𝑆𝑀

𝐹 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

 (3) 

Taking OSM road vector data of Shenzhen city as ground truth, 

the accuracy (P), recall rate (R) and F-value of road length 

extracted by each method are counted by establishing matching 

threshold of 5 m, 10 m and 20 m respectively (Table 1). From 

Table 1, we can see that the extraction results of this method are 

better than those of the other two methods in accuracy. The road 

extracted by our method is represented by skeleton points, and 

there is less data redundancy compared with the other two 

methods. With the increase of matching threshold, this redundant 

information may be calculated into recall rate. Therefore, the 

road network recall rate we proposed is on the low side. 

Table 1. The evaluation of experimental results 

Matching Threshold (%) 

P(5m) R(5m) F(5m) P(10m) R(10m) F(10m) P(20m) R(20m) F(20m) 

Davies 44.10 34.50 38.71 58.73 37.52 45.79 74.01 43.41 54.72 

Kuntzsch 42.60 34.54 38.15 60.48 38.32 46.92 76.71 46.46 57.87 

Our 53.25 32.80 40.59 64.69 37.39 47.39 83.25 44.79 58.24 
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Figure 8. The results of experiment and qualitative evaluation of road data 

4. CONCLUSIONS

In order to extract road network data efficiently and accurately 

from the trajectory data of floating cars, an adaptive radius 

centroid drift clustering method considering the direction 

information of floating cars is proposed in this paper. The 

experimental analysis is carried out based on the data of floating 

car trajectory points in Shenzhen at a certain time. OSM road 

network vector data is used as the ground truth, and the 

experimental results of other extraction methods are compared 

qualitatively and quantitatively. The results show that the 

geometric and topological accuracy of the road network data 

extracted by this method has been significantly improved, and the 

algorithm of this method is easy to implement, which is very 

suitable for big data processing. 

At the same time, there are still many aspects to be further studied 

and perfected: 1) This paper only extracts partial geometric and 

topological information of road network. The extraction of 

attribute information such as road width, road name, lane and 

traffic, needs to be further explored; 2) For road extraction with 

three-dimensional hierarchical structure such as complex 

intersections and overpasses, it still needs to be further studied; 

3) How to fuse the floating car spatio-temporal trajectory data

with other related multi-source heterogeneous large data and 

perceive more urban traffic fluctuations will be the next research 

focus. 
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