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ABSTRACT:

This paper presents a laboratory approach for geometric calibration of airborne camera systems. The setup uses an incoming laser
beam, which is split by Diffractive Optical Elements (DOE) into a number of beams with precisely-known propagation directions.
Each point of the diffraction pattern represents a point at infinity and is invariant against translation. A single image is sufficient to
allow a complete camera calibration in accordance with classical camera calibration methods using the pinhole camera model and
a distortion model. The presented method is time saving, since complex bundle adjustment procedures with several images are not
necessary. It is well suited for the use with frame camera systems, but it works in principle also for pushbroom scanners. In order to
prove the reliability, a conventional test field calibration is compared against the presented approach, showing that all estimated camera
parameters are just insignificantly different. Furthermore a test flight over the Zeche Zollern reference target has been conducted. The
aerotriangulation results shows that calibrating an airborne camera system with DOE is a feasible solution.

1. INTRODUCTION

The use of uncalibrated sensors to produce true-to-scale 3D mod-
els is increasing. Very often, almost true-to-scale results are suf-
ficient for a wide range of applications. Nevertheless, this can
also significantly increase the effort of image acquisition. Within
the paper an innovative fast method for geometric aerial cam-
era calibration by means of DOE in connection with laser beam
equipment is presented. The use of metric aerial cameras re-
quires precise knowledge about its interior orientation (IO). A
conventional and common approach for geometric calibration of
aerial cameras is the photogrammetric calibration using prede-
fined calibration grids, rather huge 3D test fields or simultaneous
on-the-job-calibration. Hereby ground truth data or ground con-
trol points (GCP) of the grid or 3D object are used to determine
the relation between the camera coordinate system and the world
reference frame. A sequence of images with several observations
of the calibration target with different orientations are typically
needed to estimate the camera parameters by minimizing a non-
linear error function.

In order to deploy a reliable modular airborne camera system for
search and rescue tasks (MACS-SaR), the aforementioned pro-
cedures have been applied extensively in the past (Kraft et al.,
2016). This is coherent with Honkavaara et al. (2008), who stated
that the ”calibration of the image acquisition system ... can only
be performed under airborne conditions either using test fields or
on a self-calibration basis...”. However a much less complex and
less time consuming calibration method is much more favoured
when it comes to time critical tasks and repeated verification of
IO parameters.

Laboratory setups have also been used in the past with single
pixel illumination by collimated light. This calibration method
uses collimator-goniometer arrangements to illuminate a set of
∗Corresponding author

single pixels (n ×m). Knowing the directions of the collimated
light, it is possible to estimate the camera parameters (Schuster
and Braunecker, 2000).

The calibration procedure reported here combines the particular
advantages of calibration grid arrangements and single pixel illu-
mination (Bauer et al., 2008). By using DOE as beam splitters
only one image with n ×m diffraction points is needed to esti-
mate the interior camera parameters. An extended procedure is
proposed here to calibrate an aerial camera system. This method
has proven to work with terrestrial cameras and rather small focal
lengths (Grießbach et al., 2009). Here it will be compared with a
conventional photogrammetric test field approach as a reference.
Furthermore both calibration results are applied to an aerotrian-
gulation (AT) of a test flight over the Zeche Zollern reference
target.

2. CALIBRATION METHODS

2.1 Camera model

For most camera calibration applications, the pinhole camera
model (see Fig. 1) is assumed. In projective space P mapping of
a homogeneous object point M̃ ∈ P3 to an image point m̃ ∈ P2

is defined with,

m̃ = PM̃ (1)

where P is a 3×4 -projection matrix consisting of the parameters
of the interior- and exterior orientation of the camera.

P = K[R|t] (2)

with R, t describing the rotational matrix and translation of the
exterior orientation relative to the world coordinate frame. The
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Figure 1. Pinhole camera model

camera matrix K containing the focal length f and the principal
point [u0, v0]

T . The skew parameter is typically negligible in
modern imaging devices and is therefore often set to zero.

K =

f 0 u0

0 f v0
0 0 1

 (3)

The ideal beam direction M̃ ′ = [X ′, Y ′, Z′]T denoted in eu-
clidean representation R3 is mapped into 2D image coordinates
by projecting it on the plane Z′ = 1

xy
1

 =

X ′/Z′Y ′/Z′

1

 (4)

with x,y representing the ideal normalized image coordinates.
From equation (1, 2) we get the ideal pixel image coordinates.

uv
1

 = K

xy
1

 (5)

Since the pinhole model assumes zero distortion in the image,
a lens distortion model has to be considered before the pinhole
model could be applied. Distortion models provide pixel by
pixel correspondences between original images and their ideal
undistorted images. Several distortion models are used in litera-
ture. Most commonly are models using rational functions (Claus
and Fitzgibbon, 2005) or the radial distortion model by Brown
(Brown, 1971). For comparison reasons we used the latter one
for both presented approaches. Pincushion or barrel distortion is
hereby expressed as follows,

[
x̂
ŷ

]
=

[
x
y

]
(1 + k1r

2 + k2r
4 + k3r

6 + · · · ) (6)

with

r2 = x2 + y2 (7)

The complete mapping of ideal points to distorted image coordi-
nates [u, v]T is subsumed to

[
x
y

]
7→
[
û
v̂

]
=

[
u0

v0

]
+f

[
x
y

]
(1+k1r

2+k2r
4+k3r

6+· · · ) (8)

Given a set of correspondent points M̃ ↔ [û, v̂]T we seek to
minimize the cost function

min
m

∥∥∥∥[û− u0

v̂ − v0

]
− f

[
x
y

]
(1 + k1r

2 + k2r
4 + k3r

6 + · · · )
∥∥∥∥2
(9)

where m = [f, u0, v0, k1, k2, k3, ω, ϕ, κ, α, β]
T describing the

interior and exterior orientation of the camera and a possible ro-
tation (α,β) of the DOE in terms of the collimation coordinate
frame. For the mapping to be invariant against translation, the
exterior orientation only consists of the rotation matrix R which
is expressed by the Euler angles ω,ϕ,κ. Since the test field cali-
bration is not invariant against translation, m in this case is set to
m = [f, u0, v0, k1, k2, k3, ω, ϕ, κ,X, Y, Z]

T .

2.2 Conventional test field calibration

Figure 2. 3D Test Field at Beuth University of Applied Sciences
Berlin

The presented calibration method is compared against a conven-
tional photogrammetric approach using a three dimensional test
field, which is located at Beuth University of Applied Sciences,
Berlin. In the following the test field setup will be described
in more detail to emphasize its complexity. It is equipped with
coded markers, which are attached on two right-angled façades
(see Figure 2). Each façade spans roughly 20 to 23m across and
13 to 23m in height. In order to serve as ground control points
(GCPs), all markers have been measured with a tachymeter fol-
lowed by a net adjustment resulting in a standard deviation of
1mm in each dimension. The image acquisition was done at six
locations. This guarantees different distances, line of sights and
height levels in relation to the calibration target. Each observation
was captured with different rotations (0°, 90°, 180° and 270°)
considering a homogeneous distribution of markers for each im-
age. Rotations around the line of sight axis prevent high correla-
tions between the principle point and the translation parameters
of the exterior orientation (Luhmann et al., 2013). The point mea-
surement was done automatically for each image due to the use
of coded markers. All parameters for the interior and exterior
orientation were derived during a bundle block adjustment.

2.3 Camera calibration with Diffractive Optical Elements

DOEs can be used to split an incoming laser beam with wave-
length λ into a number of beams with well-known propagation
directions. As the image on the sensor is a Fraunhofer diffraction
pattern, each projected image point represents a point at infinity,
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denoted in 3D projective space P3 by the homogeneous coordi-
nate M̃ = [X,Y, Z, 0]T with,

M̃ =


λfx
λfy√

1− λ2(f2
x + f2

y )
0

 (10)

where fx,fy denote a spatial frequency encoded in the DOE. With
suitable computational algorithms (Hermerschmidt et al., 2007) it
is possible to encode spatially aperiodic DOEs with arbitrary spa-
tial frequencies, choosing the propagation directions freely. As
they are easier to design for the large aperture diameters needed
spatially periodic DOEs were used here. Their spatial frequencies
are given by fx,y = nx,y/gx,y , with nx,ny denoting the partic-
ular diffraction orders and grating constants gx,gy . The grating
vectors are defining the x and y axis of the DOE coordinate frame.
However, equation (10) is only valid if the incident light wave is a
plane wave with uniform intensity distribution, perfectly perpen-
dicular to the DOE surface. In a real setup, the beam is finite in
extension and often has a non-uniform intensity profile, which is
typically Gaussian. The deviations of the real beam profile from
a plane wave cause the diffraction spots in the far field to have
a certain size, which can be estimated from the Convolution the-
orem of Fourier Optics (Goodman, 2004). For a more detailed
analysis, a laser beam can be expressed by its angular spectrum.
The consequent propagation directions are determined with the
diffraction formula for non-perpendicular incidence to the DOE,
which needs to be applied in our analysis anyway because of the
potentially unavoidable tilt of the DOE with respect to the inci-
dent laser beam. For the following analysis, the DOE coordinate
system will be used, in which the incident beam is given by,

r = [sin(β),− sin(α) cos(β), cos(α)cos(β)]T (11)

with the euler angles α and β rotating the x− and y− axes of
the DOE coordinate frame in terms of the collimator coordinate
frame. The directions of the diffracted beams are now obtained
as follows (McPhedran and Brown, 1980).

M̃ =


λfx + rx
λfy + ry√

1− (λfx + rx)2 − (λfy + ry)2

0

 (12)

It is straightforward to calculate the diffracted beam directions in
the DOE coordinate frame by simple matrix operations, therefore
the somewhat lengthy expressions that are obtained as a result
will be omitted. In order to transform the beam directions into the
camera coordinate frame, the exterior orientation of the camera in
terms of the DOE coordinate frame has to be considered,

M̃ ′ =

[
R t
0 1

]
M̃ (13)

where R is a 3 × 3 rotation matrix defining the camera orienta-
tion and t the translation vector for the camera position. Equation
(13) shows that the mapping of ideal points at infinity is invariant
against translation which is a necessary condition for the follow-
ing steps. This is also a great advantage compared to classical cal-
ibration grids for just one image is sufficient for calibration and

therefore less parameters have to be estimated. The accuracy of
the diffraction angles depends on the accuracy both of the wave-
length and the grating constants, as can be seen from equation
(10). Therefore, gas lasers emitting precisely given wavelengths
in the visible were used, rather than diode lasers which can eas-
ily drift in wavelength. The angular accuracy was checked with
a collimator-goniometer arrangement finding only minor devia-
tions from the computed values of less than 0.001°.

Diffractive points are found by an iterative approach constantly
refining the model parameters. The result is improved by calcu-
lating the centroids of the diffraction points which gives sub-pixel
accuracy.

Figure 3. DOE Setup with the MACS Camera System

2.3.1 Single camera calibration setup The principle scheme
for geometrical sensor calibration is illustrated in Figure 3. A
helium-neon laser with a wavelength of 632.8 nm is collimated
and enlarged with a beam expander to a diameter of 78 µm. The
enlarged beam is then diffracted by a DOE which is located di-
rectly in front of the camera optics. The diameter of the incident
laser beam and that of the DOE active area should be at least
as large as the aperture diameter of the camera lens. Each of the
diffracted beams is focused within the image plane of the camera.
In order to obtain spots covering the whole sensor area, the maxi-
mum diffraction angle of the DOE should be larger than the field
of view of the camera. No further alignment steps are necessary,
because the mapping of the diffraction points is invariant against
translation, and the rotation of the DOE in terms of the collima-
tion system as well as the exterior orientation of the camera is
modeled and can thus be determined (Bauer et al., 2008).

3. RESULTS AND COMPARISON OF BOTH
APPROACHES

The numerical estimations of the camera parameters are per-
formed on photogrammetric observations (image coordinates)
and corresponding GCPs. In case of the DOE calibration, all im-
age coordinates are derived from a single observation. Figure 4(a)
shows the captured diffractive pattern. 1299 image points have
been automatically detected with sub-pixel accuracy and were
used for the subsequent calculation of the camera parameters. It
can be seen that the distribution and spacing between illuminated
points is very homogeneous over the whole sensor area. Thus
the derived sensor model in general and the distortion model in
particular should be applicable for the complete sensor. A very
similar initial situation can be achieved with the test field calibra-
tion. Figure 4(b) shows the image coordinates and distribution
of all detected GCPs. In this case 1529 image points have been
automatically derived from 28 images observing 108 GCPs.
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(a)

(b)

Figure 4. Sensor coverage with GCPs (a) Distribution of 1299
diffraction points (b) Distribution of 1529 GCP observations for
the Beuth test field (sum of all images)

A summary of all derived intrinsic camera parameters can be
found in Table 1. For both methods the ck parameter as well
as the principle point is determined with an average accuracy of
0.25 pixel. Similarly the radial distortion parameters have been
calculated significantly with roughly an order of magnitude be-
low the k1 and k2 values. A closer look at the standard deviations
(stdv) reveals an inverse behaviour between both approaches. On
the one hand stdv of ck is almost three times higher than stdv
for the principle point regarding the test field approach. On the
other hand stdv of the principle point from DOE calibration is two
times higher than ck stdv. However it can be stated, that the ck

parameter as well as the principle point are significantly different
for both approaches, since the distance between the parameters is
larger than the sum of their corresponding stdv.

BHT test field DOE
value stdv value stdv

ck 50.862mm 3.7 µm 50.851mm 1.5 µm
x0 −7.8 µm 1.1 µm −17.9 µm 2.8 µm
y0 8.8 µm 1.4 µm 17.0 µm 2.7 µm
k1 1.81× 10−5 1.96× 10−7 1.99× 10−5 2.38× 10−6

k2 3.99× 10−9 4.31× 10−10 −1.01× 10−10 1.59× 10−11

Table 1. Comparison of calibration results (Pixel Pitch of the
camera is 7.4 µm)

Radially symmetric distortions are plotted as a function of the
image radius for both approaches in Figure 5(a). Because the
deviation between both curves is almost not noticeable, the curve
in Figure 5(b) depicts the difference between both. It can be seen

that the correction differs by 3.4 µm at most. However this large
deviation, which corresponds to roughly 0.5 pixel, is only present
between 60% and 80% of the image radius. Over almost half of
the image radius the deviation is less than 0.2 pixel.

(a) (b)

Figure 5. (a) Distortion functions from k1 and k2 for both
approaches (b) DOE distortion function subtracted from test
field distortion function

A negative correlation of roughly 95% is present between the
two radial distortion terms for both approaches (see Figure 6(a)
and Figure 6(b)). However it can also be seen that with the DOE
calibration (Figure 6(a)) the ck remains correlated to both radial
distortion parameters. With up to 90% this correlation is remark-
ably larger than its counterpart from the test field calibration (Fig-
ure 6(b)) with up to 20%. All remaining correlations are simi-
larly small for both approaches (less than 20%).

(a) (b)

Figure 6. Covariances between intrinsic parameters. (a)
Covariance plot for DOE calibration (b) Covariance plot for test
field calibration

Investigations with DLR’s MACS on a UAV at Zeche Zollern, a
test field which is also used for ISPRS Benchmarks (Nex et al.,
2015), have been conducted to assess the calibration accuracies of
these different calibration methods. Altitude above ground level
of the cross image flight was 95 and 110m and results in a ground
sampling distance of 1.4 cm.

The area of the test field covers almost the entire area of the open
space museum. Its extension is 320m× 220m. The highest ver-
tical extent is given by the approx. 40m high conveyor frames. It
consists of 45 grid-shaped signaled ground points.The network
measurements were carried out using tachymeters, a precision
level and an RTK-GNSS system. The stdv of the adjusted heights
are in a range of 1mm to 3mm and their relative accuracy is bet-
ter than 1mm. For the network measurements a stdv of a single
coordinate for the 15 common tachymeter survey stations, which
could be measured in forced centering, was 1.2mm. The corre-
sponding value for the datum points (GCP) was 2.5mm.

To control the IO parameter from both calibration methods, four
ground control points in the corners and one in the center of the
test field were used. The remaining 40 measuring points were
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used as checkpoints and the comparison of the respective re-
sults with ground truth. Both bundle adjustments using the same
number of images, navigation data, corresponding image points,
ground control points and the same weighting of input parame-
ters. The focus of investigation was to find out whether the dif-
ferent but fixed IOs have an influence on the result with equally
weighted input parameters. It can be shown that the difference of
principle points tends to result in small systematic lateral shifts
in an average range of GSD (see Figure 7). For images with less
systematic shifts, increased angular diffenreces of up to 20mdeg
are determined. The mean of height differences of adjusted EO
parameter was about 4mm.

Figure 7. Direction of small systematic lateral differences
(following the alternating flight pattern) of adjusted EO
parameter

The RMS at 40 check points are comparable (see Figure 8).

Figure 8. RMS at check points for BHT (blue) and DOE (red)

Figure 9 shows the absolute differences for all check points for
both sets of IO parameter. The range and the direction of errors
are almost identical with slightly increased differences in height
accuracy.

Furthermore the cross image flight would have revealed inaccu-
rate IO parameter with an increased RMS of image points. But
this RMS respectively the reprojection error is as expected in
range of 0.1 pixel for both bundle adjustments.

Figure 9. Absolute errors at check points with max error 2.5 cm
(red horizontal, pink vertical, blue flight pattern)

4. CONCLUSION AND OUTLOOK

Concerning the presented aerial camera and the real world data
set captured over Zeche Zollern, it is shown that a single image
and a subsequent one-step calibration solution is sufficiently ac-
curate to triangulate a cross image flight. Minimal differences of
IO parameters end up in expectable minimal systematic differ-
ences of adjusted EO parameters. In principle, this has no impact
on the final result in a corresponding procedure. Minor devia-
tions in absolute height accuracy are not enough to favour a cali-
bration method. Thus, the geometric calibration with DOE does
not represent any significant disadvantages in the photogrammet-
ric processing of the data, when compared to the common test
field calibration. However it seems advantageous to have more
observation with different orientations in order to decorrelate the
focal length from the radial distortion parameters. Nevertheless
it is an equivalent method and the determination of parameters of
interior orientation is much more efficient and less prone to user
errors.

Furthermore new investigation methods are rendered possible
with this laboratory calibration setup and will be part of future
work. Especially repeatability and long term stability of the de-
scribed approach with diffractive optical elements will be ex-
plored using multi-temporal data sets over a sufficiently large
time span. It has to be considered whether the results are re-
producible for larger altitudes and other optical sensors. In addi-
tion our work will be focused on camera systems with large focal
length and small field-of-view to clarify if the presented method
(DOE) can be considered as a reliable calibration procedure.
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and Zurhorst, A., 2015. Isprs benchmark for multi-platform
photogrammetry. ISPRS Annals of Photogrammetry, Remote
Sensing and Spatial Information Sciences II-3/W4, pp. 135–
142.

Schuster, R. and Braunecker, B., 2000. The calibration of the adc
(airborne digital camera)-system. Int. Arch. of Photogramme-
try and Remote Sensing pp. 288–294.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1637-2019 | © Authors 2019. CC BY 4.0 License.

 
1642




