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ABSTRACT: 

 

In this work, a new method is developed for the automatic and accurate detection and labelling of signalized, un-coded circular targets 

for the purpose of automated camera calibration in a test field. The only requirements of this method are the approximate height of the 

camera, an approximate range of orientations of the camera, and the object-space coordinates of the targets. In each image, circular 

targets are detected using adaptive thresholding and robust ellipse fitting.  Labelling of those targets is performed next. First, the 

exterior orientation parameters of the image are estimated using a one-point pose-estimation approach, where a list of possible 

orientation and target labels are used, along with height, to calculate the camera position. The estimated position and orientation of the 

camera combined with the interior orientation parameters (IOPs) are then used to back-project the known object-space coordinates of 

the targets into the image space. These targets are then matched against the targets detected in the image, and the list entry with the 

best fit is chosen as the solution. This resolves both the detection and labelling of the targets, without the need for any coded targets or 

their associated software packages, and each image is solved independently allowing for parallel processing. This process accurately 

labels 92-97% of images, with average accuracy rates of 97% or better, and average completeness rates of 70-95% in imagery from 

the three cameras tested. The cameras were calibrated using observations from the detection and labelling process, which resulted in 

sub-pixel root mean square (RMS) values determined for the pixel space residuals. 

 

1. INTRODUCTION 

1.1 Literature Review 

Automatic detection and labelling of imagery is an essential step 

in the process of calibrating a camera or a multi-camera system. 

Calibration requires a large amount of imagery, and manual 

target detection and labelling are time consuming. Coded targets 

are currently the standard type of targets applied in 

photogrammetric calibration. There are many styles of coded 

targets such as: unique patterns of circles on a target, where the 

layout of the circles encodes the target (Ahn et al., 2001; Hattori 

et al., 2002; Knyaz and Sibiryakov, 1998), centripetal encoding 

where unique sections of a disk surrounding a central circular 

target are used to encode the target (Niederöst and Maas, 1997; 

Schneider et al., 1992), algorithms that augment these styles by 

using colour information (Cronk et al., 2006; Moriyama et al., 

2008). A newer algorithm developed by Shortis and Seager 

(2014) works similarly to the centripetal targets, using straight 

lines on the boundaries of the targets and converting them to the 

polar space to encode them. It can only encode 124 possible 

targets and uses low-cost materials to make this system easy to 

implement. 

 

Systems that use coded targets need to reconstruct the scene in 

3D for onsite self-calibration. This can be done by first resecting 

an External Orientation (EO) device or Autobar (a device that has 

multiple distinguishable targets with known relative coordinates) 

to determine model space coordinates of the cameras. Then, the 

coordinates of coded targets that appear in multiple images are 

determined by spatial intersection. Alternatively, the process is 

done simultaneously with a bundle adjustment (Fraser, 1997; 

Ganci and Handley, 1998). This process is repeated for each 

image until all are processed. This means that the detection and 

labelling of the targets are partially dependent on the accurate 

determination of previous images in the data set.  Newer methods 

avoid EO devices in favour of more robust procedures such as 

simulating camera positions through the Monte Carlo method 

(Shortis and Seager, 2014). 

 

1.2 Contributions 

The method proposed in this paper takes a different approach to 

automatic detection and labelling of targets in the sense that no 

coded targets are required. The targets used in the experiments 

are simple, (non-retroreflective) white circular targets on black 

backing. This method is designed for a test-field calibration, not 

an onsite calibration like many coded target systems, and thus 

requires the object-space coordinates of the targets to be known 

through some method of surveying, and knowledge of the 

approximate height of the camera at each image. This method is 

generalized for multiple applications. One of these applications 

is metrology, where images are typically under-exposed and 

utilizes retro-reflective targets(Shortis and Seager, 2014). In this 

scenario there is very little texture in the imaging scene, 

precluding the use of structure-from-motion techniques. This 

method requires more external information than coded targets but 

is designed primarily for test-field calibration where this is not an 

issue. This method requires approximate knowledge of the 

camera’s height, which can be simply achieved via a tape 

measure. With the proposed approach, each image is processed 

independently of other images, which makes it suitable for 

parallel computing. Additionally, there is no strict requirement 

regarding the size of the simple targets; they can be much smaller 

than that of a typical coded target. For example, the targets used 

in Shortis and Seager (2014) need to be seven times larger than a 
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standard target. This large size can be inconvenient when using a 

low-resolution camera. For instance, the required size for a coded 

target would become greater than 1 m in diameter in some of the 

experiments performed in this paper. Moreover, many current 

coded target systems require expensive product licenses to 

operate the system such as V-STARS or iWitness (Cronk et al., 

2006; Ganci and Handley, 1998), which this method avoids. 

 

2. METHODOLOGY 

2.1 Target Detection and Ellipse Fitting 

The proposed target-detection approach first converts the true-

colour imagery to greyscale. The image is then converted to a 

binary image using a threshold determined using adaptive local 

thresholding (Figure 1b). The threshold is determined for each 

pixel based on the weighted average intensity of its 

neighbourhood. The neighbourhood size used is the maximum 

possible diameter of the target in pixels. This thresholding 

technique is useful for poorly lit, or unequally exposed images 

where a global threshold would allow many targets to fall below 

the threshold and be left undetected. 

 

 
 

Figure 1a) Top left, original image. 1b) Top right, binary image 

after threshold. 1c) Bottom left, image after connected 

component analysis, with each colour designating a separate 

component. 1d) Bottom right, components that were 

successfully fit to an ellipse 

 

Connected component analysis (Figure 1c) is used to label each 

separate region in the binary image and find the contour/edges of 

the region (Burger and Burge, 2009). The edge points are passed 

into a 5-point random sample consensus (RANSAC) algorithm 

to fit an ellipse to the edges using the general equation for a conic 

section (Rosin, 1999). The approximate parameters from the 

RANSAC algorithm are passed into a least squares algorithm for 

further refining the estimated centre of the target. A series of tests 

are utilized to ensure the connected component is an elliptical 

shape. First, the ratio between the semi-minor and semi-major 

axes is examined. A ratio greater than 0.3 allows distinguishing 

circular targets from stretched shapes. This also removes targets 

imaged with very high perspective distortion since they fit poorly 

in bundle adjustments. Second, the target data must fit both the 

RANSAC and LS algorithm models to some pre-defined 

threshold, which is determined by accuracy requirements and 

image quality. Third, the semi-major and semi-minor axes must 

be within the bounds set by the user for the image set. The ellipse 

axis bounds are approximate estimates determined by the user 

which are the largest and smallest possible radii for the semi-

minor and semi-major ellipses of the circular targets in the 

images. This can be performed for a camera once for a full set of 

imagery in a calibration test field. These estimates in the 

experiments performed were based on the observed sizes of the 

ellipses in the imagery. A future improvement to the algorithm 

would be to base the radii on projections of the circular target size 

into the image at the approximate maximum and minimum range 

of the test field. The centres of the fitted ellipses are stored to be 

matched against the list of labels in the labelling process. Figure 

1 provides an example of the target detection process. The 

connected components to which ellipses are fit successfully are 

shown in Figure 1d. Figure 2 shows a close up of the ellipses fit 

to the targets. 

 

 
 

Figure 2. Ellipses fit to the targets 

 

2.2 Target Labelling 

The targets have been detected but, without the context provided 

by a label, not enough information has been gathered to generate 

observations for a camera calibration bundle adjustment. While 

images are taken, the approximate height of each image is 

recorded. A reasonable set of orientation constraints are 

determined for each image or sets of similar images by the user. 

This process could be replaced by an inexpensive IMU device to 

measure approximate rotation angles, which would be converted 

to approximate external orientation angle parameters. This 

requires knowledge of the 3D object space coordinates of the 

target field so that the rotation matrix between the object frame 

and the camera frame can be approximated. The level of 

uncertainty of the camera’s orientation will determine how tight 

the constraints on the approximate angles are. For example, if a 

camera is set level, the two tilt angles can be constrained to a 

specific angle.  If the camera was only approximately level, then 

a looser constraint can be used, such as a 10° buffer around the 

tilt angles of a level camera. The angles that lie within the 

constraints are discretized based on an angular resolution chosen 

by the user. The smaller the step used, the longer the image 

labelling takes, and vice-versa.  

 

The target centres determined from the detection step are now 

transformed by correcting the distortion of the camera 

determined by Equations 1 and 2. These are referred to as the 

rectified target positions.  The distortion parameters do not need 

to be known accurately. Thus, they can come from approximate 

prior knowledge or previous calibrations of the camera. The 
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boundary pixels of the image are also rectified, to create a new 

bounding area for possible target positions on the image since 

radial distortions will change the size and shape of the entire 

image when corrected. These bounds are used later to determine 

whether a back-projected target lies within the image or not. 

 

𝑑𝑥 = 𝑥 ∗ 𝑟2 ∗ (𝑘1 + 𝑟2(𝑘2 + 𝑟2𝑘3))   (1) 

𝑑𝑦 = 𝑦 ∗ 𝑟2 ∗ (𝑘1 + 𝑟2(𝑘2 + 𝑟2𝑘3))   (2) 

 

where  r = target radial distance from the principal point 

 x, y = image coordinates 

 𝑘1, 𝑘2, 𝑘3  = radial lens distortion coefficients 

 𝑑𝑥 , 𝑑𝑦  = radial lens distortion along x and y axes 

 

The radial distance from the centre of the image to each of the 

non-rectified positions is determined, and four targets with the 

largest radial distance, one from each quadrant of the image, are 

chosen as seed targets. A list of all possible combinations of 

camera height, seed targets, seed target labels, and discrete 

orientation angles is generated.   

 

Equation 3 describes the intrinsic calibration matrix, which 

transforms between sensor space, centred at the top left of the 

image with pixel units, and camera space centred at the 

perspective centre expressed in millimetre units. Equation 4 

projects object space coordinates into sensor space. Equations 5 

– 7 show how Equation 4 is rearranged to solve for the object 

space coordinates of the camera, using the sensor space 

observations, rotation angles, IOPs and camera height. Each seed 

target’s rectified position is tested against every target label in the 

target field, using Equations 7. For each image, each seed point 

is tested against every possible target label for each combination 

of possible discrete angles.  For each entry in this list, the X and 

Y camera position is calculated (Equation 7), giving a complete 

set of exterior and interior orientation parameters. These 

parameters are used to back-project targets into the image to find 

which set of exterior orientation parameters (EOPs) is closest to 

the true EOPs. It is important that the seed target and camera do 

not have the same, or very similar heights, as this generates a 

critical configuration in Equation 7, leading to incorrect EOPs, 

which degrades the back-projection quality. To avoid this 

problem, multiple seed points are chosen from the different 

quadrants in the image, reducing the likelihood of such a critical 

configuration.  

 

𝐊 =

[
 
 
 
 
 1

𝑝𝑠
0

(− 
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where  𝐑𝑔
𝑖  = rotation matrix from object to image space 

x, y = rectified image coordinates of the target centre in 

pixel space 

 C = object space coordinates of the perspective centre 

 𝐊 = intrinsic calibration matrix of the camera 

 𝐶𝑛, 𝑅𝑛 = width and height of the image in pixels 

𝑋𝑡𝑎𝑟, 𝑌𝑡𝑎𝑟, 𝑍𝑡𝑎𝑟 = object space coordinates of the target 

label 

 𝑝𝑠  = pixel size 

 𝑓 = principal distance of the camera 

 

 
 

Figure 3. a) Top: Example of matching back-projected targets to 

rectified target positions. Red x’s are detected target centres. 

Blue circles are back-projected target centres, orange x’s are 

rectified detected target centres. Labels are included to show 

matching back projected targets and their matched target 

centres. b) Bottom left: close-up of matching results from list 

entry with the best fitness measure. c) Bottom right: close-up of 

matching results from list entry with the 10th best fitness 

measure 

 

The EOPs, combined with the nominal IOPs, allow for all points 

in the target field to be back projected into the image. The back-

projection used is for a perspective camera.  A future 

improvement to the algorithm would be to have an alternate back-

projection to use with fish-eye lens cameras. Any targets that are 

back projected behind the camera or outside the bound of the 
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rectified image are discarded. The back-projected target positions 

are compared to the rectified positions of the detected target 

centres, an example of which can be seen in Figure 3a. A simple 

process is used where the closest rectified detected target position 

to each back projected target is found. The mean and standard 

deviation of the distances between the detected and back-

projected targets is determined, and any matches that are outside 

the 95% confidence interval are removed. This procedure is 

performed for each set of EOPs, and the list of labelled targets 

along with the mean distance between the detected and back-

projected target positions are stored. The number of back 

projections that match to targets, i.e. the number of successfully 

labelled targets, must be greater than some pre-defined 

percentage of the number of detected targets. This ratio is 

determined based on the outlier likelihood during the target 

detection stage. Using the fitness measure defined in Equation 8, 

the entry list is sorted such that an entry with a low mean distance 

between detected and back-projected targets and a large number 

of matches is at the top of the list. Figure 3b shows an example 

of the entry with the smallest fitness measure and Figure 3c 

shows the entry with the 10th smallest fitness measure. It can be 

observed that the back-projected target positions and the rectified 

detected target centres in Figure 3b are much closer to one 

another compared to Figure 3c. The fitness measure of Figure 3b 

is 0.317 while the fitness measure of Figure 3c is 1.68, and their 

rotation angles differ by 10 °. 

 

𝑎 = 𝜇/𝑙         (8) 

 

where   a  = fitness measure for determining best EOPs     

combination 

 μ  = mean distance between detected and back-

projected targets 

 l  = number of matches between detected and back-

projected targets 

 

Once all the detected targets have a label, the algorithm moves 

on to the next image. Each image is processed independently, 

meaning that the software can utilize multi-processor parallel 

computing techniques to detect and label multiple images 

simultaneously. The number of parallel processes is dependent  

on the computer being used. Once the labelling is completed for 

all images, the approximate EOPs and the image space 

observations are generated and can be used to run a self-

calibration bundle adjustment. This can be used to estimate the 

IOPs, distortion parameters, and EOPs of the camera. For 

cameras with large amounts of unknown radial lens distortion, 

targets at the perimeter of an image are unlikely to be labelled.  

To solve this problem, the algorithm can be iteratively run, such 

that the first iterations’ observations are used in a camera 

calibration bundle adjustment to determine distortion parameter 

estimates. These estimates can be used in the second iteration of 

labelling to compensate for the distortion, allowing for more 

accurate labelling, and potentially further iterations until results 

are satisfactory. 

 

3. EXPERIMENTS 

The algorithm described in the methodology section was applied 

to three different image sets, captured by three different cameras. 

The three cameras used were a Ladybug5 (FLIR Systems, 

Oregon, USA), a GoPro Hero5, and a Canon Rebel T3i. These 

camera systems were used in the same calibration space, which 

is a room of dimensions approximately 11 m x 11 m x 4 m with 

a total of 232 targets of 125 mm radius made from 4 mm thick 

BubbleX plastic, and 59 paper targets of 40 mm radius, which 

cover walls, ceiling, and floor of the calibration space. Smaller 

targets also exist in the calibration space, but they are ignored in 

these experiments. A panoramic view of the calibration space can 

be seen in Figure 4, a plan view with the camera imaging 

locations is shown in Figure 5. Before data acquisition with the 

cameras was performed, the targets in the calibration space were 

imaged with a laser scanner, and the centre coordinates of each 

target were extracted by fitting a circle to the edge points. 

 

Camera 

Principal 

Distance 

(mm) 

Sensor Size 

(pixels x pixels) 

Ladybug5 4.4 2048 x 2448 

GoPro Hero5 3 4000 x 3000 

Canon Rebel T3i 50 5184 x 3456 

 

Table 1. Specifications of the cameras used in the experiments 

 

The Ladybug5 is an omnidirectional camera system composed of 

6 wide angle lens cameras with sensor sizes of 2048x2448 and 

principal distances of 4.4 mm.  From 6 different positions, and 

many orientations in the room, 336 images were taken in total, 

from the 6 cameras. The angular resolution used to define the  

EOP entry list was 3°, and tilt angles of the camera were 

constrained to a single angle since the images were captured in 

levelled portrait rotations. The GoPro Hero5 is a very-wide-angle 

lens camera with a 3mm principal distance and a sensor size of 

4000x3000 pixels. This camera was used to take 48 images, from 

a variety of angles and heights, and using a smaller section of the 

calibration space including only 160 targets. The angular 

 

Figure 4. Panoramic view of calibration space 
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resolution used was 5° and tilt angle constraints assume the 

camera was levelled to ±20°. 

 

 
 

Figure 5. Plan view of the calibration space and camera network 

configurations in the 3 experiments.  Red cameras are the 6 

Ladybug5 cameras, green is the GoPro Hero5, blue is the Canon 

Rebel T3i, the black dots are the targets1. 

 

For the final experiment using the Canon Rebel T3i. The Canon 

has a sensor size of 5184 x 3456 pixels and was fitted with a 50 

mm principal distance lens. This camera was used to take 29 

images from various heights and orientations, capturing 102 

unique targets in the calibration space. The angular resolution 

used was 5° and tilt angle constraints were the level angle ±10°. 

 

For each experiment, the height of the camera from the floor was 

recorded at each imaging location. The images were then run 

through the algorithm to detect and label all targets within them. 

To quantify the quality of the algorithm results, each target in the 

images was manually examined to determine the accuracy and 

completeness of the labelling. In addition, the observations 

generated were put through a bundle adjustment camera 

calibration to determine the residual fit of the pixel space 

observations, and the estimated object-space target position 

                                                                 
1 Ceiling and floor targets not included for sake of visibility 

 precision of the detected targets.  The time to complete detection 

and labelling for each data set is also considered. In addition, the 

required accuracy of the height determination of the camera was 

tested.  To this end, the algorithm was run with deliberately and 

increasingly inaccurate height measurements to determine the 

approximate accuracy required to find a correct labelling 

solution. 

 

4. RESULTS 

4.1 Labelling Accuracy 

The first experiment, performed with the Ladybug5, accurately 

detected and labelled 318 out of 336 images, or 95%. The 318 

accurately labelled images had an average labelling accuracy of 

99.4% with a standard deviation of 5.5%. These images have an 

average completeness of 77.3% with a standard deviation of 

14.3%. The average accuracy is the average percentage of targets 

in accurately labelled images that were correctly identified. 

Examples of labelled images can be seen in Figure 6. The RMS 

of the residuals of the pixel-space observations from the bundle 

adjustment was 0.25 pixels, and the mean estimated object-space 

target position precision was 1.0 mm. The object-space target 

position precision is calculated based on Equation 8. 

 

𝜎𝑝 = √𝜎𝑥
2 + 𝜎𝑦

2 + 𝜎𝑧
2                               (8) 

 

The second experiment, with the GoPro Hero5, accurately 

detected and labelled 44 out of 48 images, or 92%. The 44 

accurately labelled images had an average labelling accuracy of 

97.2% with a standard deviation of 5.5%. These images have an 

average completeness of 73.1% with a standard deviation of 

16.3%. The RMS of the residuals of the pixel-space observations 

from the bundle adjustment was 0.38 pixels, and the mean 

estimated object-space target position precision was 1.4 mm. 

Examples of labelled images can be seen in Figure 7. This 

experiment had the lowest accuracy and completeness (Table 2). 

One possible reason for this is that a collinearity model with 

distortions was used, and for a camera with such large amounts 

of radial distortion, a fisheye. model would potentially yield  

 

Figure 6. Selection of images from the Ladybug5 with detected and labelled targets 
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better accuracy, especially at the image edges, where radial 

distortion is at its highest 

 

Camera Ladybug5 
GoPro 

Hero5 

Canon 

Rebel T3i 
Average 

Accuracy 
99.4% 97.2% 98.9% 

Accuracy 

Standard 

Deviation  

4.3% 5.5% 2.7% 

Average 
Completeness 

77.3% 73.1% 96.8% 

Completeness 

Standard 
Deviation  

14.3% 16.3% 4.5% 

 

Table 2. Average accuracy and completeness of labelling for all 

3 experiments. 

 

The third experiment with the Canon Rebel T3i accurately 

labelled 28 out of the 29 images, or 97%. The 28 accurately 

labelled images had an average labelling accuracy of 98.9% with 

a standard deviation of 2.7%. These images have an average 

completeness of 96.8% with a standard deviation of 4.5%.  The 

RMS of the residuals of the pixel-space observations from the 

bundle adjustment was 0.39 pixels, and the mean estimated 

object-space target position precision was 1.9 mm. Examples of 

labelled images can be seen in Figure 8. The long principal 

distance of the Canon meant that the images had minimal radial 

lens distortion and had a relatively narrow Field of View (FOV). 

This likely contributes to the very high completeness percentage 

of this camera compared to the other two cameras.  The images 

tended to observe few targets, and the targets tended to be of 

similar sizes and perspective distortions.  This made both the 

detection and labelling portions of the algorithm more effective, 

and the smaller distortions meant that targets at the edges of the 

images were easier to label. 

 

4.2 Relative Execution times of the Algorithm 

As part of the evaluation of the algorithm, the time required to 

process large datasets is considered. The computer used to 

process the data described in the experiments section has an 

Intel® Core™ i7-8700k 3.7GHz CPU with 6 cores, and 64 GB 

of RAM and a 64-bit OS. The language used to implement the 

algorithm was Python 3, with the Spyder integrated development 

environment. Using only one processor to run the algorithm, the 

time required to process the image sets is many hours, as can be 

seen in Table 3.  However, when utilizing multiple cores of the 

processor, the time required to process large sets of data is 

drastically reduced. It is also important to note that the number 

of list entries per image is the main factor of the time required per 

image (number of list entries defined in Equation 9). The 

Ladybug5 dataset has fewer list entries per image (due to its 

mounting apparatus, all the imagery acquired was approximately 

level, allowing for tilt angles constrained to one discrete angle) 

which means that even though it has almost 7 times the number 

of images of the GoPro dataset, it only took twice as long to 

complete. Many of the GoPro images were taken with off-level 

 

Figure 8. Selection of images from Canon Rebel T3i with detected and labelled targets 
 

 

Figure 7. Selection of images from GoPro Hero5 with detected and labelled targets 
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orientations. This meant that a wider range of angles needed to 

be tested to assure accurate results, as indicated by the GoPro 

having the largest number of list entries. The difference in the 

size of list entries are primarily generated by the number of 

angles that need to be tested. The number of combinations of 

rotations and target labels is described in Equation 9. 

 

𝐿 = 𝑛𝜔 ∗ 𝑛𝜅 ∗ 𝑛𝜙 ∗ 𝑛𝑙𝑎𝑏𝑒𝑙𝑠 ∗ 𝑛𝑠𝑒𝑒𝑑                (9) 

 

where   L = number of entries in the list 

 nω  = number of discrete omega angles tested 

 nκ  = number of discrete kappa angles tested 

 nϕ = number of discrete phi angles tested 

 𝑛𝑙𝑎𝑏𝑒𝑙𝑠 = number of targets in the test field 

 𝑛𝑠𝑒𝑒𝑑 = number of seed points used 

 

The time difference between the algorithm when run using 

parallel processing, and when not, emphasizes the importance of 

parallel computing as it drastically reduces the runtime of the 

algorithm. 

 

Camera L 
# of 

images 

Runtime 

on 1 

processor 

(H:M:S) 

Runtime 

on 6 

processors 

(H:M:S) 

Ladybug5 139680 336 10:42:23 1:59:13 

GoPro 
Hero5 

3732480 50 7:15:16 1:09:12 

Canon 

Rebel T3i 
1454400 30 4:03:11 0:42:35 

 

Table 3. Run-time of experiments using different numbers of 

processors 

 

4.3 Required Height Accuracy 

Using data from the Ladybug5, the accuracy of the approximate 

camera height required for the labelling procedure was tested. As 

can be seen in Figure 9, the accuracy of the solution is the same 

at both 0 and 5 cm of error, with all the targets accurately labelled. 

At 10 cm of error, there is one incorrectly labelled target 

(highlighted by the yellow circle in Figure 9), and past 15 cm of 

error a correct solution is no longer found. 

 

This can be observed in Figure 9 as all the target labels at a height 

error of 15 cm are different from the previous, correctly labelled 

images within Figure 9 at smaller height errors. The position 

where these images were taken from was approximately 4 m from 

the wall with the targets. A similar simulation was performed 

with Ladybug5 imagery taken 2.5 m from the targets. In this 

simulation, the labelling was accurate when the height error was 

within 5 cm of the true height, and when the height error was 10 

cm, the labelling was entirely incorrect as can be seen in Figure 

10. This demonstrates that the height used in the algorithm does 

not need to be more accurate than 5 cm, and simply using a tape 

measure, or other approximate should be effective in determining 

the height.  It also demonstrates that the closer the camera to the 

targets, the more refined the approximate height must be. This is 

also true of the chosen angular resolution for EOPs. For camera 

positions closer to the targets, a finer angular resolution is 

required. 

 
 

Figure 9. Height measurement error simulation for targets at 4 

metres 

 

 

Figure 10. Height measurement error simulation for targets at 

2.5 metres 

 

5. DISCUSSION 

When an accurate set of EOPs is used for the back projection, the 

points usually match very accurately, with very few incorrect 

matches being found.  This is exemplified in the very high 

accuracy of the labelling in all 3 experiments (Table 2).  A future 

improvement to the algorithm would be to automatically identify 

failed images and remove them from the dataset automatically. 

Another future improvement is to determine if a labelled target is 

behind any other targets. Due to the complex shape of the 

calibration space, (Figure 5) it is possible to have targets on a 

surface within the FOV of the camera but occluded by a wall or 

other surface, meaning that the detected target might be labelled 

as a target that is behind it in reality. 
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Figure 11. Section of an image from GoPro Hero5, highlighting 

incorrect labelling caused by radial lens distortion and 

perspective distortion clustering targets in the image 

 

Determining this using the surface normals of the targets and ray 

intersection could be implemented to ensure no targets are mis-

labelled as targets that are behind them. There are other possible 

situations which could negatively affect the algorithms ability to 

determine an accurate labelling solution.  A target field that is 

symmetrical will introduce a high likelihood for incorrect 

solutions, due to the algorithm relying on the target space to have 

a distinct geometric configuration in the 2D image, from different 

viewpoints in the 3D object-space. A similar problem could occur 

if a target field has repetitive patterns, such as a fixed grid 

placement that targets adhere to as this can cause the algorithm 

to mistake those targets for other targets that hold a similar 

pattern.  

 

A problem that occurred in processing the imagery when the 

image was taken from a view point that causes a very few targets 

to appear in the image. In this case, there is a high likelihood of 

finding an incorrect labelling solution because there are many 

possible combinations of angles and positions that could 

approximately fit a small number of targets (less than 8). The 

configuration that leads to the largest number of missed and 

incorrectly identified targets are images with high perspective 

distortion. For instance, viewing a surface with a high volume of 

targets from an extreme angle clusters many of the targets 

together in the image space. This can confuse the labelling 

process because as the targets become closer together in the 

image space, the associated increase in the fitness measure of 

mislabelling a target as one of its neighbours becomes smaller. 

This problem is exacerbated by cameras with high amounts of 

positive radial lens distortion, which causes targets at the edge of 

images to distort away from the centre of the image towards the 

edges, such as in Figure 11. 

 

6. CONCLUSION 

In this work, a new method has been developed for automatic and 

accurate detection and labelling of circular photogrammetry 

targets for the purpose of automated camera calibration. This new 

method works using an approximate camera height and known 

object space coordinates of the targets to calibrate a camera or 

camera system in a test field environment.  The detection and 

labelling of targets is automated and allows each image to be 

processed independently of one another. This independent 

processing means that large batches of images can be resolved by 

processing them in parallel.  This process is very accurate with 

92%, or greater, of the images being accurately labelled, and 

greater than 97% average accuracy for all cameras tested. This is 

true even for cameras with high levels of radial lens distortion. 

The detected and labelled targets serve as observations for 

camera-calibration bundle adjustment. When used to calibrate 

the cameras tested, sub-pixel image-space residuals were 

achieved. 
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