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ABSTRACT:

Most existing lidar odometry estimation strategies are formulated under a standard framework that includes feature selection, and
pose estimation through feature matching. In this work, we present a novel pipeline called LO-Net for lidar odometry estimation
from 3D lidar scanning data using deep convolutional networks. The network is trained in an end-to-end manner, it infers
6-DoF poses from the encoded sequential lidar data. Based on the new designed mask-weighted geometric constraint loss, the
network automatically learns effective feature representation for the lidar odometry estimation problem, and implicitly exploits the
sequential dependencies and dynamics. Experiments on benchmark datasets demonstrate that LO-Net has similar accuracy with the
geometry-based approach.

1. INTRODUCTION

Among the applications in robotics and autonomous driving,
motion estimation and map-building are among the most
fundamental prerequisites. Most modern mobile platforms
rely on lidars or cameras for 3D geometry perception.
Many researchers are working to achieve real-time 6
degree-of-freedom simultaneous localization and mapping
(SLAM) with camera-based and lidar-based approaches.
Compared to cameras, lidars can provide a 360-degree view
with one sensor, acquire more accurate distance information,
and are not sensitive to lighting conditions. Although
camera-based methods have advantages in loop-closure
detection, their sensitivity to illumination and viewpoint change
may make such capabilities unreliable. Laser-based mapping
and localization methods have been extensively studied in the
field of robotics. These methods can function even at night, and
the high resolution of many 3D lidars allows for the capture of
fine details of an environment at long ranges. Therefore, our
work focuses on using 3D lidar to achieve real-time motion
estimation and mapping. While lidars provide accurate 3D
point cloud measurements, estimating the motion between
two consecutive laser scans is a complicated task, due to the
sparse and non-uniform nature of the point clouds, as well as
the missing appearance information. Moreover, characteristic
patterns, such as circular rings, produced by a moving scanner,
can easily mislead local correspondence estimation algorithms.

Motion estimate of the mobile platforms can be used as a
prior when aligning consecutive laser scans, allowing for fast
and relatively accurate mapping. The variety of approaches
that exists either focus on efficiency, for example when used
for autonomous navigation, or on accuracy when building
high-fidelity maps. Errors caused by pairwise scan registration
in lidar odometry, lead to misalignments and degeneration
in mapping. Registering laser scans to a map which is
∗Corresponding author – cwang@xmu.edu.cn

built by aggregating previous measurements, often minimizes
accumulated error. In addition, graph-based optimization is
also adopted to minimize accumulated errors (Kümmerle et al.,
2011, Frese et al., 2005, Olson et al., 2006), but the optimization
is computationally demanding for large maps. Developing an
accurate and robust real-time lidar odometry estimation and
mapping system is desirable.

In this work, we design a deep neural network architecture
for lidar odometry estimation problems. We accumulate
the motion specific features by incorporating pairwise scans,
interpret the spatial relations of scans by applying normal
consistency, and locate the effective area by fusing mask
prediction. We are inspired by the recent CNNs-based camera
localization and pose regression works (Zhou et al., 2017,
Abhinav V., 2018, Kendall et al., 2017, Yang et al., 2018b)
in the design of network structure, as well as the traditional
lidar odometry methods (Zhang , Singh, 2014, Moosmann ,
Stiller, 2011, Deschaud, 2018) in the aspect of lidar mapping.
In summary, the main contributions of our work are as follows:
1) We propose a novel scan-to-scan lidar odometry estimation
network which simultaneously learns to estimate the normal
and mask as an auxiliary task. 2) We incorporate the temporal
spatial geometric consistency constraint into the network,
which provides higher order interaction between consecutive
scans and better regularizes the learning of odometry. We
perform comprehensive evaluation on the two commonly
used benchmark datasets KITTI (Geiger et al., 2013) and
Ford Campus Vision and Lidar Data Set (Pandey et al.,
2011). Experiment results manifest that our framework can
effectively improve the accuracy and robustness of traditional
geometry-based approach. To the best of our knowledge,
our proposed method is the first neural network regression
model that is comparable to traditional geometry feature-based
techniques for 3D lidar odometry estimation.
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2. RELATED WORK

Classical registration methods used in pose estimation include
Iterative Closest Point (ICP) (Pomerleau et al., 2013, Besl ,
McKay, 1992) and its variants (Besl , McKay, 1992, Pomerleau
et al., 2013) and feature-based approaches (Rusu et al., 2009,
Velas et al., 2016).

By finding correspondences at a point-wise level, ICP aligns
two sets of points iteratively by minimizing distance between
corresponding points until stopping criteria are satisfied. When
the scans include large quantities of points, ICP may suffer
from prohibitive computational cost, and points from the
current lidar scanning data may miss their spatial counterparts
in next scan due to sparsity of scan resolution. To this
end, many variants of ICP have been proposed to improve
its efficiency and accuracy (Rusinkiewicz , Levoy, 2001).
Feature-based matching methods are attracting more attention,
as they require less computational resources by extracting
representative features from the data. These features should be
suitable for effective matching and invariant of point-of-view.
However, most existing feature-based methods do not take into
account the factors in the environment that may inhibit the
odometry estimation, such as dynamic objects. A low-drift
and real-time lidar odometry and mapping (LOAM) method
is proposed in (Zhang , Singh, 2014, Zhang , Singh, 2017),
and has been considered as the state-of-the-art lidar motion
estimation method. It extracts the line and surface features
in lidar data and performs point feature to edge and plane
scan-matching to find correspondences between scans. LOAM
dose not consider the dynamic objects in the scene and
achieves low-drift and real-time odometry estimation by having
two modules running in parallel. The estimated motion of
scan-to-scan registration is used to correct the distortion of
laser scans and guarantee the real-time performance. The high
accuracy odometry estimation is produced by registering onto a
map to cancel the drift.

Recently, deep learning based methods have outperformed
classical approaches in many computer vision tasks. Many
Convolutional Neural Networks (CNNs) architectures and
training models have been proposed. Despite their success
in many 2D vision problems, the exploration of developing
effective CNNs to process 3D geometric data, such as 6-DoF
pose estimation, has been limited. More recently, the methods
that using CNNs to regress the 6-DoF pose from RGB images
have been explored (Wang et al., 2017, Zhou et al., 2017, Yang
et al., 2018a, Yin , Shi, 2018). But these methods inevitably
suffer from the inaccurate depth prediction and scale drift.

3. METHOD

3.1 Data Encoding and Normal Estimation

To convert the original sparse and irregular point clouds into a
structured representation, we encode the lidar data into point
cloud matrices by a cylindrical projection (Chen et al., 2017).
Given a 3D point p = (x, y, z) in the lidar coordinate system,
the projection function can be formulated as

α = arctan(y/x)/∆α

β = arcsin(z/
√
x2 + y2 + z2)/∆β

(1)

where α and β are the indexes which set the points’ positions
in the matrix. ∆α and ∆β are the average angular resolution
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Figure 1. Illustration of data encoding and normal
estimation.
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Figure 2. Network architecture of feature extraction layers
(red dashed line) and mask prediction layers (black

dashed line) . Our network takes two consecutive lidar
scans as input and infers the relative 6-DoF pose.

between consecutive beam emitters in the horizontal and
vertical directions, respectively. The element at (α, β) is
assigned intensity value and range value of the lidar point p.
We keep the point closer to the lidar when multiple points are
projected into a same position. After applying this projection
on the lidar data, we get a matrix of size H ×W ×C, and C is
the number of matrix channels.

As shown in Figure 1, given a 3D point Xi and its k neighbors
Xij , j = 1, 2, . . . , k on the grid, we simplify the normal
estimation by computing the weighted cross products overXi’s
four neighbors. Then we smooth normal vectors using a moving
average filter (Moosmann, 2013). This can be formulated as

N (Xi) =
∑

Xik ,X
ij∈P

(wik(Xik −Xi)×wij(Xij −Xi)) (2)

where (Xik − Xi) is a 3D vector, wik is the weight of Xik

with respect to Xi. We set wik = exp(−0.2|r(Xik )− r(Xi)|)
to put more weight on points which have similar range value r
with Xi, and less weight otherwise. P is the set of neighboring
points of Xi, such as {Xi1 , Xi2 , Xi3 , Xi4} in Figure 1.

3.2 Network Structure

As shown in Figure 2, our LO-Net takes two consecutive scans
(St−1;St) as input and jointly estimates the 6-DoF relative pose
between the scans, point-wise normal vector, and a mask of
moving objects for each scan.

Lidar point clouds are considered as the 3D model of the
scene, and often contain dynamic objects such as cars and
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Figure 3. The structure of fireConv and fireDeconv from
SqueezeNet.

pedestrians in the road environment. These factors may inhibit
the learning pipeline of odometry regression. Based on the
encoder-decoder architecture (see Figure 2), we deploy a mask
prediction network (Zhou et al., 2017, Yang et al., 2017) to
learn the compensation for dynamic objects, and improve the
effectiveness of the learned features and the robustness of the
network.

In order to reduce the number of model parameters and
computation cost, and make it is possible to run the network on
a low performance platform, such as mobile robot or backpack
system. We replace most of convolutional layers of the network
with fireConv, and deconvolutional layers with fireDeconv. The
fireConv and fireDeconv module of SqueezeNet (Iandola et al.,
2016) can construct a light-weight network that can achieve
similar performance as AlexNet (Krizhevsky et al., 2012).
Structures of the two modules are shown in Figure 3. The first
1×1 convolution compresses the input tensor. The second 1×1
convolution and the 3 × 3 convolution let the network to learn
more feature representations from different kernel sizes.

Since the width of intermediate features is much larger than
its height, we only down-sample the width by maxpooling
during feature extraction. The reweighing layer (Wang et al.,
2018) is adopted to learn a more robust feature representation.
For mask prediction, the fireDeconv is used to up-sample the
feature maps and get the original scale resolution point-wise
mask prediction. To infer the 6-DoF relative pose between
the two input scans, we concatenate output features from the
enlargement layer (Wang et al., 2018) of mask prediction layers.
The last two fully-connected layers output the translation x and
rotation quaternion q, respectively.

The network parameters are shown in Table 1 and 2. All
convolutional and deconvolutional layers are followed by
Rectified Linear Unit (ReLU) (Glorot et al., 2011) except for
the last output layers where nonlinear activation function is
applied. We experimented with batch normalization performed
on convolutional layers, data normalization and rescaling,
however they did not yield significant performance gains, rather
in some cases they negatively affected the odometry accuracy.

3.3 Loss Function

We use Lx(St−1;St) and Lq(St−1;St) to demonstrate how
to learn the relative translational and rotational components,
respectively.

Lx(St−1;St) = ‖xt − x̂t‖2

Lq(St−1;St) =

∥∥∥∥qt − q̂t
‖q̂t‖

∥∥∥∥
2

(3)

Table 1. Network parameters of mask prediction layers.
For fireConv and fireDeconv layers, the filter size is
represented as C1 − C2 − C3 as shown in Figure 3.

Layer Filter size Kernel size / Stride
conv 1 64 3 / 1×2

maxpooling 3 / 1×2
fireConv 1 16-64-64
fireConv 2 16-64-64

maxpooling + reweighing 1 3 / 1×2
fireConv 3 32-128-128
fireConv 4 32-128-128

maxpooling + reweighing 2 3 / 1×2
fireConv 5 48-192-192
fireConv 6 48-192-192
fireConv 7 64-256-256
fireConv 8 64-256-256

enlargement + reweighing 3
fireDeconv 1 64-128-128
fireDeconv 2 64-64-64
fireDeconv 3 16-32-32
fireDeconv 4 16-32-32
dropout (0.5)

conv 2 2 3 / 1×1

Table 2. Network parameters of odometry regression
layers.

Layer Filter size Kernel size / Stride
fireConv 1 64-256-256
fireConv 2 64-256-256

maxpooling + reweighing 1 3 / 2×2
fireConv 3 80-384-384
fireConv 4 80-384-384

maxpooling 3 / 2×2
fc 1 512

dropout (0.5)
fc 2 3
fc 3 4

where xt and qt are the ground truth relative translational
and rotational components, x̂t and q̂t denote their predicted
counterparts. Due to the difference in scale and units between
the translational and rotational pose components, previous
works (Kendall et al., 2015, Wang et al., 2017) gave a weight
regularizer λ to the rotational loss to jointly learn the 6-DoF
pose. However, the hyper-parameter λ need to be tuned when
using new data from different scene. To avoid this problem,
we use two learnable parameters sx and sq to balance the scale
between the translational and rotational components in the loss
term (Kendall et al., 2017).

Lo = Lx(St−1;St) exp(−sx) + sx

+ Lq(St−1;St) exp(−sq) + sq
(4)

We use the initial values of sx = 0.0 and sq = −2.5 for all
scenes during the training.

Let Xαβ
t−1 and Xαβ

t be the spatial corresponding point elements
of the consecutive data matrices St−1 and St, respectively. We
can derive X̂αβ

t from Xαβ
t−1 through

X̂αβ
t = PTtP

−1Xαβ
t−1 (5)

where Tt is the relative rigid pose transformation between
the consecutive scans. P denotes the projection process and
P−1 is its inverse operation. Therefore, X̂αβ

t and Xαβ
t are a

pair of matching elements, and we can measure the similarity
between corresponding elements to verify the correctness of
pose transformation. In this work, we compare the normal
N (x) as it reflects smooth surface layouts and clear edge
structures of the road environment. Thus, the constraint of pose
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transformation can be formulated as minimizing

Ln =
∑
αβ

‖N (X̂αβ
t )−N (Xαβ

t )‖1 · e|∇r(X̂
αβ
t )| (6)

where∇r(X̂αβ
t ) is a local range smooth measurement,∇ is the

differential operator with α and β. The item e|·| allows the loss
function to focus more on sharply changing areas in the scene.

The predicted maskM(Xαβ
t ) ∈ [0, 1] indicates the area where

geometric consistency can be modeled or not, and implicitly
ensures the reliability of the features learned in the pose
regression network. Therefore, the geometric consistency error
as formulated in Equation (6) is weighted by

Ln =
∑
αβ

M(Xαβ
t )‖N (X̂αβ

t )−N (Xαβ
t )‖1 ·e|∇r(X̂

αβ
t )| . (7)

There is no ground truth label or supervision to train the mask
prediction. To avoid the network minimize the loss by setting
all values of the predicted mask to be 0, we add a cross-entropy
loss as a regularization term

Lr = −
∑
αβ

logP (M(Xαβ
t ) = 1). (8)

In summary, our final objective function to minimize for
odometry regression is

L = Lo + λnLn + λrLr (9)

where λn and λr are the weighting factors for geometric
consistency loss and mask regularization, respectively.

4. EXPERIMENTS

Implementation details. The point cloud data we use is
captured by the Velodyne HDL-64 3D lidar sensor. During
encoding the data matrix, we set H = 64 and W = 1800
by considering the sparseness of point clouds. The width of
input data matrix are resized to 1792 by cropping both ends
of the matrix. The whole framework is implemented with
the popular Tensorflow library (Abadi et al., 2016). During
the training, the mask prediction network is pre-trained using
KITTI 3D object detection dataset, and all layers are trained
simultaneously. The loss weights of Equation (9) are set to be
λn = 0.15 and λr = 0.05, and the batch size is 8. We choose
the Adam (Kingma , Ba, 2014) solver with default parameters
for optimization. The network is trained on an NVIDIA 1080
Ti GPU.

Baselines. We compare our approach with several existing lidar
odometry estimation methods: ICP-point2point (ICP-po2po),
ICP-point2plane (ICP-po2pl), GICP (Segal et al., 2009),
CLS (Velas et al., 2016) and Velas et al. (Velas et al., 2018). The
first two ICP methods are implemented using the Point Cloud
Library (Rusu , Cousins, 2011). As far as we know, (Velas
et al., 2018) is the only deep learning based lidar odometry
method that has comparable results. Loop closure detection is
not implemented for all methods since we aim to test the limits
of accurate odometry estimation.

We firstly conduct the training and testing experiments on the
KITTI dataset. Then, based on the model trained only on
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Figure 4. Trajectory plots of KITTI Seq. 08 with ground
truth. The results of ICP-po2po are not shown as its large

scale drift.
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Figure 5. Evaluation results on the KITTI Seq. 00-10. We
show the average errors of translation and rotation with

respect to path length intervals. LO-Net achieves the best
performance among all evaluated methods. The results of
ICP-po2po and ICP-po2pl are not shown as its large error.

the KITTI dataset, we directly test the model on the Ford
dataset. We use the KITTI odometry evaluation metrics (Geiger
et al., 2012) to quantitatively analyze the accuracy of odometry
estimation. Table 3 shows the evaluation results of the methods
on KITTI and Ford datasets. Although there are differences
between the two datasets, such as different lidar calibration
parameters and different systems for obtaining ground truth,
our approach still achieves the best average performance among
evaluated methods. Some trajectories produced by different
methods are shown in Figure 4. Figure 5 shows the average
evaluation errors on KITTI Seq. 00-10.

5. CONCLUSIONS

We presented LO-Net, a novel learning pipeline for lidar
odometry estimation. We introduced the weighted geometric
consistency constraint for regressing 6-DOF poses that
consistent with the motion model. We evaluated our approach
on two public datasets and showed the significant performance
improvement over prior works. In our future work, we plan
to incorporate recurrent units into our network to utilize the
long-term temporal features, and investigate in more detail
the geometry feature representation learned by the network to
enable the whole framework to work in an end-to-end manner
without costly collected ground truth data.
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Table 3. Odometry results on KITTI and Ford datasets. Our network is trained on KITTI sequences and then tested on
the two datasets.

Seq. ICP-po2po ICP-po2pl GICP (Segal et al., 2009) CLS (Velas et al., 2016) Velas et al. (Velas et al., 2018)1 LO-Net
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00† 6.88 2.99 3.80 1.73 1.29 0.64 2.11 0.95 3.02 NA 1.47 0.72
01† 11.21 2.58 13.53 2.58 4.39 0.91 4.22 1.05 4.44 NA 1.36 0.47
02† 8.21 3.39 9.00 2.74 2.53 0.77 2.29 0.86 3.42 NA 1.52 0.71
03† 11.07 5.05 2.72 1.63 1.68 1.08 1.63 1.09 4.94 NA 1.03 0.66
04† 6.64 4.02 2.96 2.58 3.76 1.07 1.59 0.71 1.77 NA 0.51 0.65
05† 3.97 1.93 2.29 1.08 1.02 0.54 1.98 0.92 2.35 NA 1.04 0.69
06† 1.95 1.59 1.77 1.00 0.92 0.46 0.92 0.46 1.88 NA 0.71 0.50
07* 5.17 3.35 1.55 1.42 0.64 0.45 1.04 0.73 1.77 NA 1.70 0.89
08* 10.04 4.93 4.42 2.14 1.58 0.75 2.14 1.05 2.89 NA 2.12 0.77
09* 6.93 2.89 3.95 1.71 1.97 0.77 1.95 0.92 4.94 NA 1.37 0.58
10* 8.91 4.74 6.13 2.60 1.31 0.62 3.46 1.28 3.27 NA 1.80 0.93

mean† 7.13 3.08 5.15 1.91 2.23 0.78 2.11 0.86 3.12 NA 1.09 0.63
mean* 7.76 3.98 4.01 1.97 1.38 0.65 2.15 1.00 3.22 NA 1.75 0.79

Ford-1 8.20 2.64 3.35 1.65 3.07 1.17 10.54 3.90 NA NA 2.27 0.62
Ford-2 16.23 2.84 5.68 1.96 5.11 1.47 14.78 4.60 NA NA 2.18 0.59

1: The results on KITTI dataset are taken from (Velas et al., 2018), and the results on Ford dataset are not available.
†: The sequences of KITTI dataset that are used to train LO-Net.
∗: The sequences of KITTI dataset that are not used to train LO-Net.
trel: Average translational RMSE (%) on length of 100m-800m.
rrel: Average rotational RMSE (◦/100m) on length of 100m-800m.
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