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ABSTRACT:

The global navigation satellite system (GNSS) recently plays an extremely important role in positioning, navigation, and timing (PNT)
applications for the modernized automations and mechanizations, e.g., unmanned aerial vehicles (UAVs), unmanned ground vehicles
(UGVs), military aircrafts, etc. Nevertheless, GNSS signals are very vulnerable to the influence of various interferences when they are
received on Earth, and the reason why it happens is that the long line-of-sight (LOS) distance between the satellite and the receiver
user dramatically reduces the power strength after the signal reaches at the ground. The weak GNSS signal is hard to be handled
with traditional phase lock loop (PLL), especially in a dynamic environment. Again, the trade-off among the coherent integration
time of tracking loop, received signal power strength, and signal or user receiver dynamics is still a tough and remained problem to
be solved. The Kalman filter (KF) is always a promising tool to efficiently decrease the random noise for the tracking process. In
our work, we evaluate the performances of the tracking loop modelled with both standard KF and extended Kalman filter (EKF). An
adaptive algorithm for the covariance matrix of the process noise is contained in our system to increase the tracking ability in a weak
and dynamic environment. Besides, a noise channel is also contained to automatically adjust the priori measurement covariance for the
KF tracking loop model. Simulation results demonstrate the performance with the proposed technique.

1. INTRODUCTION

The advent of modernized and new global navigation satellite
systems (GNSS), including BeiDou II&III systems developed by
the Chinese government, GPS modernization of the United States
(US), and GALILEO satellite navigation system of the European
Union (EU), have enhanced their applications in many situations
based on positioning, navigation, and timing (PNT), e.g., un-
manned aerial vehicles (UAVs) (Gonçalves and Henriques, 2015,
Daakir et al., 2017), unmanned ground vehicles (UGVs) (Sivaneri
and Gross, 2018), manned aircrafts (Kamel, 2011), some deep
space applications (Capuano et al., 2015), etc. If the GNSS re-
ceiver works in a weak and dynamic situation, signals received
from the navigation satellites would be very hard to be handled
with traditional tracking loop. In order to enhance the availability
of the GNSS receiver for modern navigation applications, it is im-
portant to improve the tracking sensitivity of weak and dynamic
GNSS signals.

Various algorithms have been investigated to process the chal-
lenging GNSS signals based on previous researches - The max-
imum likelihood estimation (MLE) method is proposed to esti-
mate the code phase error, carrier phase error, and Doppler shift
error in a highly dynamic environment (Won et al., 2012), by
which more accurate local replicas can be obtained with the nu-
merically controlled oscillator (NCO). The discrete chirp-Fourier
transform (DCFT) is also presented to estimate the Doppler fre-
quency shift and Doppler shift rate of the incoming GNSS signal
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(Fan et al., 2013). The FRFT algorithms is reported to estimate
the Doppler rate of GNSS signal in the acquisition process (Luo
et al., 2018b, Luo et al., 2019) by which the high-dynamic sig-
nal can be tracked in a more efficient way with the aiding of the
priori Doppler rate estimation (Luo et al., 2018a). Besides, a vari-
ational Bayesian adaptive cubature Kalman filter is also exploited
to improve the tracking accuracy of high-dynamic GNSS signals
(Miao et al., 2017). An improved vector tracking technique has
been reported to deal with the high-dynamic tracking in terms of
the GNSS carrier phase in recent times (Chen and Gao, 2019).
Furthermore, a GNSS signal processing technique with the open-
loop tracking architecture has been presented to enhance the per-
formance of the GNSS software-defined receiver (SDR) naviga-
tion in a challenging urban area (Ruan et al., 2015). In addition,
the wavelet transform technique is also evaluated on the improve-
ment for the carrier phase tracking in an extreme situation where
the signal power is drastically declined by the ionospheric scintil-
lation interference (Ruan et al., 2017). It can be noticed that the
Kalman filter (KF) tracking loops have been involved in most of
the previous challenging cases, and this type of tracking architec-
ture plays a significant role in the GNSS-challenging environment
for GNSS signal processing.

The main objective of this project is to verify the performance of
adaptive KF loops towards the GNSS receiver design in an ex-
treme challenging environment. Two types of KF tracking loops,
i.e., standard KF and extended KF (EKF), with self-adaptive al-
gorithms will be investigated to cope with the weak GNSS sig-
nal in a highly dynamic environment in this research. At first,
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the system models of the standard KF and EKF tracking loops
would be illustrated, respectively. Then, methods to build up the
process noise matrix and measurement noise matrix will be de-
scribed, where the process noise model has been improved with
a self-adaptive technique based on the innovation sequence, and
the measurement noise matrix is automatically adjusted with the
thermal noise jitter model of the two-quadrant arctangent carrier
discriminator based on an extra noise tracking channel. Finally,
a highly dynamic signal model which was defined by the Ameri-
can jet propulsion laboratory (JPL) (Vilnrotter et al., 1988) will be
used to verify the performance of the proposed algorithms when
the input carrier-to-noise ratio density (C/N0) is decided in dif-
ferent levels.

2. GNSS CARRIER TRACKING LOOPS BASED ON
KALMAN FILTER

In this section, the signal carrier tracking loop of GNSS will be
modelled with standard KF and EKF, respectively.

2.1 Standard Kalman Filter Model

The 4th-order KF tracking loop can estimate the carrier phase
error, Doppler angular velocity, Doppler angular acceleration and
Doppler angular jerk on condition that the system model can be
accurately constructed as well as the priori noise variance can be
given. The associated state vector satisfies

xk =
[

∆θk ωk αk βk
]T

(1)

where ∆θk is the carrier phase error, ωk denotes the carrier an-
gular frequency, αk represents the carrier angular frequency rate,
βk stands for the carrier angular jerk. The system state transition
equation can be given by

xk = Φk,k−1xk−1 + Bk−1uk−1 + wk−1 (2)

with

Φk,k−1 =

 1 ∆t 1
2
∆t2 1

6
∆t3

0 1 ∆t 1
2
∆t2

0 0 1 ∆t
0 0 0 1

 (3)

Bk−1= − ∆t

 1
0
0
0

 , uk−1 =
[
2π
(
f̂k − fi − f0

)]
(4)

where Φk,k−1 stands for the state transition matrix, Bk−1 repre-
sents the state control matrix, uk−1 denotes the control variable,
wk−1 is the process noise, f̂k is the local replica of the carrier
frequency adjusted by the NCO, and ∆t stands for the updating
time, fi and f0 represent the intermediate frequency and initial
Doppler frequency, respectively. Next, the system observation
equation can be expressed as (Psiaki and Jung, 2002)

zk = Hkxk + Ckuk−1 + vk (5)

with

 Hk =
[

1 1
2
∆t 1

6
∆t2 1

24
∆t3

]
Ck = −∆t

2

zk = ∆θ̃k

(6)

where Hk is the observation vector,Ck stands for the observation
control value to adjust the systematic error for the measurement
in this work, vk denotes the observation noise. Only the carrier
phase error, ∆θ̃k, offered by the arctangent carrier discriminator
is contained in the system as a measurement for each updating
interval. Since only the GNSS carrier signal is contained in our
subsequent simulations, the bit transition ambiguity will not oc-
cur in the tracking process. In this case, the four-quadrant arct-
angent carrier discriminator is used in this research which can be
given by

∆θ̃k = atan2 (Qk, Ik) (7)

where atan2 (·) denotes the four-quadrant arctangent discrimina-
tor;Qk and Ik represent the quadrature and in-phase components
of the outputs with integration and dumping (I&D) implementa-
tion, respectively (Kaplan and Hegarty, 2006). To further explain
why the four-quadrant arctangent discriminator is used here, on
the one hand, the data code can be wiped off using the A-GPS
or A-GNSS technique (Kaplan and Hegarty, 2006) in practical
situation; on the other hand, the bit sign is also able to be ad-
dressed with the given secondary code in the pilot channel formed
in some binary offset carrier (BOC) signals, e.g., GPS L1C (IS-
GPS-800E, 2018) and Galileo E1 (EU, 2015).

2.2 Extended Kalman Filter Model

Referring to previous researches, the carrier tracking loop devel-
oped with the EKF algorithm has been attracted more attention
than the standard KF one (Petovello and Lachapelle, 2006, Ruan
et al., 2017). The state vector for the EKF-based carrier tracking
loop can be given by

δxk =
[
δ∆θk δωk δαk δβk

]T
(8)

where δ∆θk denotes the error of the carrier phase residual, δωk
δαk, and δβk represent the carrier angular frequency error, the
error of the carrier angular frequency rate, and the error of the
carrier angular jerk, respectively. The state transition equation
can be expressed as

δxk = Φk,k−1δxk−1 + wk−1 (9)

and the observation equation is given by

zk = Hkδxk + vk (10)

The transition matrix and the observation matrix are identical to
the ones built in standard KF tracking model.
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2.3 Process and Measurement Covariance Matrices

2.3.1 Process Covariance Matrix: Ignoring the subscript for
the epoch denotation, in this research, the process noise for each
of the unknown states follows the discrete Gaussian white noise
distribution, and the noise vector is given by

w = [wb, wd, 0, wj ]
T (11)

where wb and wd stand for the normal random walks with zeros
means for clock bias and drift, respectively; wj denotes the pro-
cess noise for the carrier angular jerk (Brown and Hwang, 2012).
These noise terms are assumed to be independent with each other.
So, the corresponding covariance matrix can be given by


E
[
wbw

T
b

]
= Sf

E
[
wdw

T
d

]
= Sg

E
[
wjw

T
j

]
= Sj

(12)

where E [·] is the expectation operator of the variable. Accord-
ingly, the process noise covariance matrix can be obtained as

Q =

 Sf 0 0 0
0 Sg 0 0
0 0 0 0
0 0 0 Sj

 (13)

Since the algorithm is working in a discrete-observations-based
case, the transition terms for the process noise matrix is finally
derived as

Qk =

∫ ∆t

0

Φ × Q × ΦTdt (14)

where the transition matrix, Φ, is given by (3); since it is not
changed with the time variable, the subscript is omitted here; Sf
and Sg represent the spectral densities of the clock bias error and
clock drift error, respectively, and they can be obtained in pre-
vious reference (Brown and Hwang, 2012); Sj denotes spectral
density associated with the white noise caused by the change of
Doppler rate or dynamics between the satellite and the receiver
along the LOS direction.

2.3.2 Adaptive Measurement Covariance Matrix: Since
the arctangent carrier discriminator is used for the carrier track-
ing loop in our research, the corresponding thermal noise jitter in
radian is given as follow (Kaplan and Hegarty, 2006)

σθ =

√
Bp
C/N0

(
1 +

1

2∆tC/N0

)
(15)

with Bp = 1
∆t

, where Bp is carrier loop noise bandwidth in Hz,
C/N0 denotes the carrier-to-noise density ratio in Hz here, ∆t
stands for the coherent integration time in tracking or the updat-
ing interval of the KF-based tracking loop, and the part of the
equation involving, ∆t accounts for the squaring loss. Regard-
less of the other noise sources and considering the given thermal
noise jitter as the distribution of the priori measurement noise, the

measurement covariance matrix of the KF-based tracking loop
has the access to be automatically adjusted with the C/N0 esti-
mation. The value ofC/N0 will be calculated with an extra noise
channel in the system. Therefore, the measurement covariance is
given by

Rk = σ2
θ (16)

2.3.3 Self-Adaptive Algorithm for Process Covariance Ma-
trix: The difference between the latest measurement and a pri-
ori estimate is called the innovation sequence, Vk, which is given
as the follow (Salychev, 1998)

Vk = zk − HkΦk,k−1x̂k−1

= zk − Hkx̂k,k−1

= Hkxk + vk − Hkx̂k,k−1

= Hkx̃k,k−1 + vk

(17)

where x̂k,k−1 is the priori estimation, and x̃k,k−1 is the priori
estimation error. Then, covariance matrix of the innovation se-
quence can be derived as

Γk = E
(
VkV

T
k

)
= HkPk,k−1(Hk)T +Rk (18)

where Pk,k−1 represents the priori state covariance matrix.

Since the priori process driving error of the incoming GNSS sig-
nal which follows the Gaussian white noise distribution may be
contaminated in a practical environment, a self-adaptive algo-
rithm based on the innovation sequence is presented to help im-
prove the performance of carrier tracking. Rk is known and the
initial process noise covariance is also given by (14). When the
KF tracking loop is working, Qk will be influenced by the prac-
tical tracking results. Given

x̂k − Φk,k−1x̂k−1

= x̂k,k−1 + Kk (zk − Hkx̂k,k−1) − Φk,k−1x̂k−1

= x̂k,k−1 + Kk (zk − Hkx̂k,k−1) − x̂k,k−1

= Kk (zk − Hkx̂k,k−1)
= KkVk

(19)

Then, it can be given by

{
x̂k − Φk,k−1x̂k−1 = ŵk−1

x̂k − Φk,k−1x̂k−1 = KkVk
(20)

Therefore,

Q̂−
k−1 = KkE

(
VkV

T
k

)
KT
k (21)

Assuming that Kk ≈ Kk−1 and Pk,k−1 ≈ Pk−1, equations
(19) and (21) can be rewritten as

{
Γ̂k ≈ HkPk−1(Hk)T +Rk
Q̂−
k−1 ≈ Kk−1Γ̂k(Kk−1)T

(22)
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In practical implementation, the α-β filtering algorithm is used to
smooth the self-adaptive variance matrix of process noise whose
initial value is determined with (14). The final process covariance
matrix can be given by

Q̂k−1 = α · Q̂k−2 + β · Q̂−
k−1 (23)

where α is chosen as 511
512

and β is set to 1
512

in this work.

Therefore, the self-adaptive algorithm for the process covariance
matrix is done, and the unknown states can be estimated with the
KF recursive formula (Faragher, 2012).

3. CARRIER NCO UPDATES

Updating processes for the carrier NCO of the tracking loop differ
in different KF-based tracking architectures.

3.1 Standard Kalman Filter Carrier Tracking Loop:

The carrier frequency NCO based on the standard KF tracking
loop can be updated as the follow

f̂k+1 = (fi + f0)

+ 1
2π∆t

(
∆θ̂k + ω̂k∆t+ 1

2
α̂k∆t2 + 1

6
β̂k∆t3

) (24)

with

x̂k =
[

∆θ̂k ω̂k α̂k β̂k
]T

(25)

where x̂k is estimated with the standard KF method.

3.2 Extended Kalman Filter Carrier Tracking Loop:

The residual of carrier phase error is estimated with the EKF ap-
proach during each updating interval. Accordingly, the unknown
state variables related to the NCO update are estimated by

x̂k = x̂k−1 + δx̂k (26)

which means, the associated residual can be firstly derived as

δf̂k = 1
2π∆t

×
(
δ∆θ̂k + δω̂k∆t+ 1

2
δα̂k∆t2 + 1

6
δβ̂k∆t3

) (27)

Finally, the NCO of the carrier frequency can be obtained as

f̂k+1 = (fi + f0) + δf̂k + 1
2π∆t

×
(
∆θ̂k−1 + ω̂k−1∆t+ 1

2
α̂k−1∆t2 + 1

6
β̂k−1∆t3

) (28)

Therefore, the carrier frequency NCO is controlled by f̂k+1 based
on standard KF or EKF methods within the updating interval
in our work. The process covariance matrix and measurement
covariance matrix are built in the same way for these two ap-
proaches, and both can be adaptively adjusted depending on the
real-time estimation results.

4. SIMULATIONS AND EXPERIMENT RESULTS

In this section, both carrier tracking loop modelled with stan-
dard KF and EKF architectures with proposed self-adaptive al-
gorithms will be tested in simulations. Matlab R2016b software
will be used in the experiments to generate the GNSS carrier sig-
nals formed with a typical high-dynamic model which will be
subsequently described. Simulation experiment results demon-
strate the performances of the carrier tracking loop based on the
adaptive algorithms for the KF covariance matrices.

The related clock spectral densities are initialized in accordance
with the given coefficients for OCXO as listed in Table 9.1 of
this provided reference (Brown and Hwang, 2012); the numeri-

cal value for Sj is set to
(

2π × 1000 × fr/c

)2

allowing the KF

carrier tracking loop to tolerate the dynamic model which will be
subsequently described and used in the simulations, where fr is
the radio frequency of the GPS L1 C/A signal, and c denotes the
speed of the light. The process covariance matrix and the associ-
ated coefficients are highly related to the bandwidth value of the
carrier loop formed with the KF algorithms.

4.1 High-Dynamic Model Applied in Simulations

In simulations, the highly dynamic signal model was defined by
the American JPL, and Figure 1 illustrates the model, where g
denotes the gravity. The motion can be depicted as Table 1. In
this section, the standard KF and EKF tracking loop with pro-
posed self-adaptive algorithms are both simulated to track the
high-dynamic GNSS signal carrier under the condition that the
C/N0 ranges from 25 dB-Hz to 45 dB-Hz. The coherent integra-
tion time, which can be also regarded as the updating interval for
KFs, is set as 5ms in simulations.
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Figure 1. Highly dynamic signal model.

4.2 Phase Lock Indicator

The phase lock indicator (PLI) is used to evaluate the tracking
performance of the signal carrier in simulations. The PLI was
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Time 0s The initial speed is -50m/s;
0s-3s The acceleration is -25g;

3s-3.5s Add the jerk of 100g/s;
3.5s-5.5s The acceleration increases to 25g;
5.5s-6s Add the jerk of -100g/s;
6s-8s The acceleration decreases to -25g.

Table 1. The description of the highly dynamic motion.

presented by Salem et al. in 2012 (Salem et al., 2012), and it is
given as the follow

PLI ≈ cos (2∆θ) (29)

The value of PLI is expected to range from -1 to 1. When the PLI
reaches to -1, the local replica of the GNSS signal is completely
out of lock with the incoming signal, while 1 indicates a perfect
match.

4.3 Simulation Results

Four types of KF tracking methods are involved in the experi-
ments, i.e., tracking loop based on standard KF method, EKF
method, standard KF with self-adaptive process variance matrix,
EKF with self-adaptive process variance matrix, and these four
methods are associated with the short forms of SKF, EKF, A-SKF,
A-EKF, respectively. The self-adaptive process variance matrix is
calculated with (23).

Simulation experiments have been carried out in the situations
where the C/N0 ranges from 25 dB-Hz to 45 dB-Hz. The root-
mean-square error (RMSE) results based on four KF-based car-
rier tracking loops are illustrated in Figure 2. Furthermore, the
respective means and RMSEs of the PLI are shown in Figure 3
and Figure 4. Some conclusions can be drawn from the simula-
tion results.

At first, as the input C/N0 decreases, the KF tracking loop based
on the self-adaptive process variance matrix is more promising
than the ordinary ones to replicate the local carrier signals. More
tracking noise has been reduced when the tracking loop works in
a weak and dynamic environment.

However, when the input C/N0 is higher than around 39 dB-
Hz, the self-adaptive algorithms does not perform better than the
ordinary KF algorithms any more as illustrated in Figure 2. PLI
curves provided in Figure 5 also proves that the performances
of self-adaptive KF tracking loop outperform the ones with the
ordinary KF tracking algorithm when they are working in a weak
situation while the former performs worse than the latter when
the incoming signal power is in a good condition.

Although a large amount of the tracking noise has been decreased
with the self-adaptive KF algorithms during the tracking time
spanning, more time will be taken by the tracking loop to sense
the change of the incoming dynamics. For example, the track-
ing errors of the ordinary standard KF/EKF-based algorithms be-
come larger than the ones with self-adaptive methods at the time
when the incoming jerks occur. In addition, it can be noticed that
the PLI performance differences between the adaptive EKF and
the ordinary EKF shrink regarding the results based on the stan-
dard KF algorithms as the comparisons. Estimation results of PLI
in Figure 3 and Figure 4, tracking results in Figure 6 and Figure
7 could demonstrate this conclusion.
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Figure 2. RMSEs of carrier tracking errors.

25 30 35 40 45
C/N0 [dB-Hz]

0.75

0.8

0.85

0.9

0.95

1

M
ea

n 
of

 P
L

I

SKF EKF A-SKF A-EKF

35 40 45
0.96

0.97

0.98

0.99

1

Figure 3. Means of the PLI.

Then, it has also been verified that the tracking results based on
EKF algorithms are slightly better than the results with standard
KF tracking loops especially when the signal is very weak. Nev-
ertheless, when the input C/N0 of the received signal increases,
the tracking frequency errors with the standard KF are slightly
smaller than the errors of EKF algorithms while experiment re-
sults with the EKF in acceleration error and jerk error have been
proved to be a bit smaller. The tested PLI errors of these two al-
gorithms are very close to each other. Furthermore, the RMSE
of PLI with standard KF perform a bit better than the ones with
EKF algorithms, while the conclusions in terms of the mean of
PLI is opposite.

Besides, the tracking sensitivity has been enhanced regarding that
the tracking loop with self-adaptive algorithms manage to ob-
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tain the local replicas in a 25-dB-Hz situation while it fails to
be done using KF-based algorithms without self-adaptive algo-
rithms. Corresponding tracking results are given in Figure 8.

In the end, the carrier tracking results and errors for the high dy-
namic signal model in the environment where the input C/N0 is
26 dB-Hz are illustrated in Figure 6 and Figure 7.

5. CONCLUSIONS

We discussed the performances of the carrier tracking loops based
on four types KF algorithms, i.e., standard KF and EKF with self-
adaptive process variance matrix, standard KF and EKF without
such self-adaptive approach, in a weak and dynamic environment.
Experiment results have proved that the adaptive algorithms for
both standard KF and EKF tracking architectures can enhance
the tracking performance in a challenging environment, e.g., the
accuracies of tracking error as well as the tracking sensitivities
have been improved in a typical dynamic situation, especially
when the incoming signal power is very weak. On the other hand,
it has been verified that the EKF algorithms slightly outperform
the standard KF one in a challenging environment. However, as
the input C/N0 increases to around 39 dB-Hz, tracking perfor-
mances for these two KFs would be very close to each other. The
results based on standard KF approach can even become slightly
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Figure 6. Tracking results when C/N0 is set to 26 dB-Hz.
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Figure 7. Tracking errors when C/N0 is set to 26 dB-Hz.

better than the EKF-based ones in the situation when the receiver
signal power is stronger.
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Figure 8. Tracking results when C/N0 is set to 25 dB-Hz.
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