MAPPING VELOCITY OF THE POTSDAM GLACIER, EAST ANTARCTICA USING LANDSAT-8 DATA
Keywords: glacier velocity, image matching, pixel tracking, Landsat-8 OLI, Antarctic glacier
Abstract. Most of the glaciers have been retreating and thinning globally due to climate change. Glacier velocity is one such important parameter of glacier dynamics, which helps to understand the mass balance. The variations in velocity at different areas of the glacier can be used to identify the zones of ablation and accumulation. Zones of accumulation are identified as areas with higher velocity. This data is useful to incorporate in the glacier mass balance analysis. This study aims to derive the glacier velocity, using feature tracking technique for Potsdam glacier, east Antarctica. Feature tracking is an efficient way to derive glacier velocity, which is based on a cross-correlation algorithm that seeks offsets of the maximal correlation window on repeated satellite images. In this technique, two temporally different images are acquired for the same area and a distinct feature on both images is identified and the velocity is calculated with respect to the movement of that particular feature from one image to the other. Landsat-8 data for the year 2016 was used to derive velocity. Finer resolution promotes better feature tracking so the panchromatic band (band 8) of Landsat-8 OLI with a resolution of 15 m was utilized for deriving velocity. This technique was performed using COSI-Corr module in ENVI. This tool calculates displacement between the east-west and north-south directions, and the resultant velocity is calculated using the displacement in both directions and the temporal difference of two images. The velocity map generated at a resolution of 240 m showed that the resultant velocity ranged between 18.60 and 285.28 ma−1. Bias and root mean square error (RMSE) have been calculated with respect to the point-by-point MEaSUREs data provided by National Snow and Ice Data Centre at 1000 m resolution. The RMSE was found to be 78.06 ma−1 for 2016. The velocity for Potsdam glacier was also pictorially validated with the DGPS measurements from literature.