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ABSTRACT: 
 
Vegetation indices (VIs) have been extensively employed as a feature for dry matter (DM) estimation. During the past five decades 
more than a hundred vegetation indices have been proposed. Inevitably, the selection of the optimal index or subset of indices is not 
trivial nor obvious. This study, performed on a year-round observation of perennial ryegrass (n = 900), indicates that for this 
response variable (i.e. kg DM.ha-1), more than 80% of indices present a high degree of collinearity (correlation > |0.8|.) Additionally, 
the absence of an established workflow for feature selection and modelling is a handicap when trying to establish meaningful 
relations between spectral data and biophysical/biochemical features. Within this case study, an unsupervised and supervised 
filtering process is proposed to an initial dataset of 97 VIs. This research analyses the effects of the proposed filtering and feature 
selection process to the overall stability of final models. Consequently, this analysis provides a straightforward framework to filter 
and select VIs. This approach was able to provide a reduced feature set for a robust model and to quantify trade-offs between optimal 
models (i.e. lowest root mean square error - RMSE = 412.27 kg.DM.ha-1) and tolerable models (with a smaller number of features - 
4 VIs and within 10% of the lowest RMSE.)  
 
 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Vegetation indices have been extensively employed on 
precision agriculture (PA) and remote sensing (RS) to estimate 
different biochemical and biophysical attributes of vegetation. 
VIs can be portrayed as an example of feature engineering in 
RS, in which the combination of different bands outputs a new 
feature that should display higher explanatory value. Such 
technique has been employed since the infancy of RS through 
simple ratios (Jordan, 1969) ensued by normalized differences 
(Rouse, Hass, Schell, & Deering, 1973). During the past 
decades, over a hundred vegetation indices have been proposed 
(Xue & Su, 2017), surpassing the possibility of optimally or 
accurately employing each one of them without extensive 
domain knowledge. This knowledge is not, however, 
universally available nor readily deployable. 
 
A characteristic of hyperspectral data from vegetation is the 
high level of multicollinearity within portions of the spectrum. 
In practical terms, such redundant and numerous features will 
result in models that require a substantially larger number of 
observations and time to be confidently trained/validated 
(Hughe’s phenomenon). More importantly, this may result in 
models which are prone to overfit (ergo, not perform well in 
unseen datasets.) To attenuate such issue, there are, mainly, four 
different approaches to this problem: (i) filtering, (ii) feature 
engineering (exemplified earlier), (iii) feature extraction and 
(iv) feature selection.  
 

Feature extraction is usually performed through transformation 
methods such as principal component analysis (PCA) or partial 
least squares (PLS). A major issue with these methods is that 
principal components and latent variables are, in most cases, not  
interpretable as these are linear combinations of the original 
feature space.  
 
Alternatively, filtering and variable selection can be coupled to 
(a) decrease the level of multicollinearity, (b) take advantage of 
feature engineering (i.e. vegetation indices/decades of expert 
knowledge), (c) determine which are the best combination of 
VIs and (d) reduce the number of bands needed for the accurate 
estimation.  
 
Furthermore, the identification of a small set of VIs which yield 
a generalizable model is an important design parameter when 
developing custom-made multispectral sensors. 
 
In summary, the objective of this study is, therefore, to develop 
a framework based on filtering and selection of VIs that could 
provide a feature-space with several positive characteristics: 
condensed expert knowledge, fewer bands, less obvious 
multicollinear features and, ultimately, a robust model with a 
minimum number of features. 
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2. MATERIALS AND METHODS 

2.1 Data Collection: 

The experiment was established at the Tasmanian Dairy 
Research Farm in Elliot, TAS (Australia - 41°04'57.3"S 
145°46'21.8"E.) The experimental layout can be described as a 
set of 30 plots (1.3 x 7.5m) of perennial ryegrass (Lolium 
perenne). The plots were grouped in three main blocks (10 plots 
per block); each block was split in two different growth 
intervals (long and short or approximately 30 and 15 days, 
respectively), each plot on the split-block was randomly 
allocated a different fertilizing regime (0, 25, 50, 75 or 100 kg 
of N). A schematic layout is presented on Figure 1 . 

 

Figure 1- Perennial ryegrass plot layout: colours and shades are 
linked to growth interval and fertilization level, respectively. 

Spectral data was collected by an ASD Handheld 2 (Colorado, 
USA) on five different dates, always around solar noon and 
under clear-sky conditions: December 2016, February, April, 
October and November 2017.  
 
This instrument acquires data from 325 to 1075 nm, with a total 
of 750 bands and field of view equal to 25º. Total time spent to 
acquire all measurements (180 samples) was on the range of 1.5 
to 2 hours. The sequence of measured plots was randomized to 
minimize any systematic effect of solar position across the plots 
during data collection.  
 
The instrument setup was as follows and as per the 
manufacturer's recommendation: 30 scans for spectrum 
averaging; 60 scans for dark current and white reference. 
 
Within each plot, six randomly allocated sample-sites were 
selected. Spectral measurements (i.e. samples) were taken at 
approximately one-meter height; thus, with a footprint equal to 
0.15 m² (or 0.44 m diameter). Each sample-site was measured 
five times; the final sample spectral data was the average value 
of these five measurements. 
 
In addition, after finishing measuring the samples of each plot, a 
scan of the white reference (Spectralon®) was recorded. The 
intention of this procedure was two-folded: (a) to monitor the 
stability of the instrument and (b) detect any possible change in 
atmospheric conditions. Additional best practices were in 
accordance to the instruction of the user's manual. 
 
The sensor footprint was manually harvested (up to residue-
height of approximately five cm), stored on micro perforated 
plastic baking bags and dried for 48 hours at 60 °C on a forced 
air oven immediately after harvest. Afterwards, weights were 
measured on a digital scale (MassCal, 30kg ±0.5g).   

Consequently, there are 180 observations per campaign and, 
thus, 900 observations total. 
 
2.2 Data Analysis - Feature Filtering and Selection: 

The framework for data analysis (Figure 2) consists of three 
different steps: (A) filtering of highly correlated and non-
significant features; (B) recursive feature elimination and 
feature selection (best and tolerable subsets) and (C) model 
validation. 
 

 

Figure 2 - Framework for data analysis 
 
2.2.1 Filtering: Spectral data (reflectance) was transformed 
in 97 different VIs (package hsdar::vegindex). Subsequently, a 
correlogram (package caret::findCorrelation) was created by 
which a maximum cut-off can be applied to eliminate highly 
correlated features (unsupervised filtering). Features above the 
cut-off are evaluated in a pair-wise fashion: the one with the 
largest mean correlation (i.e. correlation with all other features) 
is removed.  
 
As an additional filtering, a minimum cut-off equal to |0.2| 
(arbitrary value) between the remaining filtered features and 
kg.DM.ha-1 values (supervised filtering) was applied.  
 
2.2.2 Recursive Feature Elimination: after the filtering 
process, a recursive feature elimination (package caret::rfe) is 
performed against the training set (70% observations, n = 630, 
random forest regression, repeated cross-validation – 5 repeats, 
10 folds). Ranking of features, as well as variable importance, 
are calculated through a random-forest routine. Within such 
analysis, the optimal (subset of features with minimum RMSE) 
and tolerable models are identified. The tolerable feature set is 
the smallest group of variables which have presented (in 
training-testing stages) results which are less than 10% 
(arbitrary value) above of the minimum RMSE (optimal) model. 
Such process is repeated for each of the five different 
correlation cut-off levels. 
 
2.2.3 Model Training and Validation: The variable 
importance for each run (5 repeats, 10 folds) at the tolerable 
number of features is extracted. The highest-ranking features 
(variable importance) are then used as input to train a random-
forest model on the training/testing dataset (n = 630). The 
trained model performance is assessed against the validation 
dataset (n = 270).  
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2.2.4 Analysis of Filtering and Feature Selection: 
 
As previously stated, ideally, this framework should reduce the 
size of the feature-space without compromising the level of 
accuracy/model performance (e.g. RMSE and/or r-squared) in a 
validation dataset. To assess this hypothesis, five different 
correlation cut-off levels are tested: 99%, 95%, 90%, 85% and 
80%. Such analysis serves three additional purposes: (a) check 
whether the number of variables in a tolerable feature-space 
changes, (b) which VIs are selected according to the cut-off 
thresholds and (c) if these selected features are the same after a 
specific threshold. In other words, if the feature filtering and 
selection process stabilizes and robust/generalizable models are 
created. 
  

3. RESULTS 

Overall, the different growth periods and fertilization regimes 
were able to provide a wide gradient of DM, with values 
ranging from 111.8 kg.ha-1 (minimum) to 4662.8 kg.ha-1 
(maximum) and a mean equal to 1647.8 kg.ha-1. Given the 
different seasons and weather conditions, the dataset should 
provide an adequate surrogate for on-farm pasture conditions.  

 
As initially discussed, VIs are highly correlated and the process 
of filtering drastically decrease the number of remaining 
features as shown in Figure 3. However, this has not 
considerably affected model performance for models with more 
than three or four VIs, as shown in Figure 4.  
 

 

Figure 3 - Number of remaining features by level of correlation 
after filtering process. 

 
There is, however, a noticeable difference when trying to select 
a model with only one feature. In this case, the cut-off threshold 
and random-forest routine may result in noticeable differences, 
with RMSE differences ranging of around 100 kg.DM.ha-1 
(Figure 4).  

 

Figure 4 - Root-mean-square (RMSE) error for different feature 
filtering and selection cut-off levels. 

The process of selecting a tolerable model (black-triangle), 
rather than the optimal model (black-circle) also highly 
decreases the number of input features (Figure 5). In the case of 
a correlation cut-off threshold of |0.99|, the number of variables 
used in the tolerable model is equal to four, whereas the optimal 
model has 45 features. On interest of avoiding similar Figures, 
only the selection process of tolerable/optimal model for a cut-
off of 0.99 is displayed.   
 

 

Figure 5 - Optimal (circle) and Tolerable (triangle) Model 
Selection 

 
For the remaining correlation cut-off thresholds, the number of 
features on a tolerable model is also equal to four. It is 
important to stress, however, that (as per Figure 4) model 
performance on training/test stages for all initial cut-off 
thresholds (and four variables) is similar (i.e. RMSE ≈ 430 kg 
DM.ha-1).  
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1827-2019 | © Authors 2019. CC BY 4.0 License.

 
1829



 

The variables selected for each tolerable model, along as its 
variable importance (extracted from training and test stages) are 
presented on Figure 6 and Table 1.  
 

Ranking 0.99 0.95 0.90 0.85 0.80

1st MPRI CI CI CI CI

2nd RDVI Datt3 DDn SPVI SPVI

3rd REP_Li DDn Datt3 Datt3 Datt3

4th SR8 Carter Carter Carter Carter

Filtering Cut-off Level

 

Table 1 - Selected features by different initial correlation cut-off 
levels. 

 
It is important to point out that when the correlation cut-off is 
equal to 0.99 (lowest filtering level), the selected variables are 
all different from the remaining cut-off models (Table 1.) 
Equally, the values of variable importance are lower than for the 
remaining models (Figure 6.)  
 
Noticeably, after the cut-off of |0.95|, the selection of variables 
stabilizes. As shown on Figure 6, the following VI are selected:  
CI (Zarco-Tejada, Pushnik, Dobrowski, & Ustin, 2003), Datt3 
(Datt, 1999), and Carter (Carter, 1994) (cut-off |0.80| is not 
displayed as it has the same VIs as |0.85|)  
 

 

Figure 6 - Variable importance for tolerable dataset 

Tolerable models for all five cut-off values are validated ( as per 
Figure 7) and have present similar performance as in training-
testing stage. Results are summarized on Table 2: On interest of 
avoiding similar figures, only the selection process of 
tolerable/optimal model for a cut-off of |0.99| is displayed.   
 

 

Figure 7 - Model performance (validation). Cut-off = |0.99| 
 
 

Cut-off RMSE r-squared MAE Features

0.99 438 0.75 332 4

0.95 436 0.76 328 4

0.90 435 0.76 327 4

0.85 438 0.75 330 4

0.80 438 0.75 330 4  

Table 2 - Validation results by cut-off level. 
 

4. CONCLUSION 

Overall, this framework was successful to decrease the size of 
the feature-space, without compromising the level of accuracy 
of final (i.e. both optimal and tolerable) models.  
 
Largely, whether employing more or less restrictive filtering, 
tolerable models presented similar performances (Table 2.) In 
other words, regardless the filtering threshold levels, all models 
presented similar performance when including three or more 
features as seen on Figure 4 . 
 
However, when analysing the less-rigid threshold (i.e. |0.99|), 
variable selection is vastly different from all other models and 
variable importance is lower than for the remaining models 
(Figure 6.) Alternatively, these remaining models (i.e. more 
restrictive filtering models) have consistently selected CI, Datt3 
and Carter. Even when applying the most restrictive cut-off 
threshold (i.e. |0.80|) the pool of seven remaining variables 
(Figure 8) contain the VIs which are found to be of highest 
variable importance and would be, subsequently, selected for 
the tolerable models.  
 
Such VIs are not strongly correlated (Figure 8); thus, avoiding 
obvious multicollinearity issues and present higher values for 
variable importance. Such indicates that, in this context, a 
restrictive filtering can be employed as a simple, yet, powerful 
initial technique within the task of feature selection. 
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Figure 8 - Correlation of filtered features at cut-off = 0.80 
 
Additionally, this framework was successful to also greatly 
reduce the number of features while providing the possibility to 
evaluate the trade-off between subsets of the initially filtered 
variables. In short, the discretionary choice for tolerable rather 
than optimal models can also largely decrease the number of 
necessary variables (Figure 5).  
 
It is important to stress that after four variables, the addition of 
new variables has marginal returns on terms of predicting power 
regardless of the initial filtering cut-off, as per Figure 4. 
 
Most importantly, tolerable models (with only four VIs) were 
able to generalize, providing comparable results to the train/test 
set against a validation/unseen dataset.  
 
This indicates a satisfactory approach to estimate a wide range 
of DM values throughout the year with a small number of VIs.  
 
An additional remark should be made: the plateau of 430 
kg.DM.ha-1 is equivalent to approximately 6.5g per sample area 
(0.15 m2); thus, it is important to also stress that a fraction of 
this error may well be due the sampling/harvesting technique or 
even a drying process that, despite our best efforts, has some 
random noise/error. It seems reasonable, therefore, to make use 
of the tolerable models as they model the bulk of the 
phenomena, rather than noise due random effects.  
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