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ABSTRACT:

A particle swarm optimization (PSO) algorithm has been widely used in the field of remote sensing image classification. We
proposed the IPSO-FKM algorithm, which use the improved PSO (IPSO) algorithm to optimize the initial parameters of the Fuzzy
K-Means (FKM) clustering algorithm. We combine the crossover operator of genetic algorithms with PSO, and introduce the fuzzy
membership degree of fuzzy mathematics into K-means clustering algorithm. Then we use the IPSO-FKM algorithm to optimize the
classification results of the Hyperion remotely sensed images, and use FKM, IPSO, and IPSO-FKM to extract the land cover
information on the wetlands in Dongting Lakes, China. The experimental results have been validated by the classification results of
MLC and the field investigation data. The validation results have been evaluated from three perspectives: the overall classification
accuracy and the Kappa coefficient from the pixel perspective, the intra-cluster distance and the inter-cluster distance from the
feature perspective, and the partition coefficient and partition entropy from the information perspective. According to the comparison
of IPSO and FKM algorithms, the IPSO-FKM algorithm has a better performance than the others in all three respects. Additionally,
in terms of the fitness convergence, the IPSO-FKM algorithm has a better searching velocity and better convergence to lower the

quantization errors compared with the other two algorithms.

1. INTRODUCTION

Data clustering is a process of grouping together similar
multidimensional data vectors into a number of clusters. A set
of pixels must be divided into many clusters according to their
similarity and are adjusted over many iterations. The K-means
algorithm is a clustering algorithm application in unsupervised
image classification. Introducing a fuzzy mechanism to K-
means, the Fuzzy K-means clustering algorithm performed fast
convergence and rational clustering partitions. FKM is an
iteration optimal algorithm; its objective function is built based
on the weighted distance between each pixel in the image and
each of the cluster centers.

Eberhart and Kennedy(Kennedy and Eberhart, 1995) proposed
the Particle Swarm Optimization (PSO) algorithm first in 1995;
this approach is a simple and effective new-style evolutionary
computation technique and is similar to a genetic algorithm or
an ant colony algorithm. PSO is a population-based
optimization algorithm and a type of evolutionary computation
that is based on the swarm intelligence algorithm(Civicioglu
and Besdok, 2013). The basic idea comes from the study of
birds and has a simplified social model, which includes the
simulation of bird migration and aggregation behavior in the
process of foraging. The algorithm has typical characteristics of
swarm intelligence. It uses an information-sharing mechanism,
which allows individuals to learn from each other to promote
the development of the entire swarm(Jain, Nangia et al., 2018).

Compared with other swarm intelligence evolutionary
algorithms, the PSO has many advantages, such as smaller
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parameter settings, a stronger ability to perform a global search,
and a higher precision in clustering. PSO algorithms have been
successfully applied in vehicle scheduling, image segmentation,
and spectral analysis(Chen, Lin et al., 2009, Ding, Jiang et al.,
2014). However, the PSO easily runs into local extreme and has
some drawbacks, including incomplete convergence, slow
convergence speed, and poor local search ability. Learning from
biological evolutionary theory, the Genetic Algorithm adopts
the crossover operator and mutation operator to improve the
global and local searching capability. It models the problem as a
process of biological evolution, produces the next generation of
solutions by reproduction, performs crossover and mutation
operators, and gradually eliminates the solutions that have poor
fitness values. After such an evolutionary process, the system
can evolve individuals that have a high fitness function value.
The crossover operator of GA advances the global searching
capability and avoids running into local extreme and converging
too early. Thus, this crossover operator can also be used in a
PSO(Starke, Hendrich et al., 2017).

This paper improves the PSO by introducing the crossover
operator of the GA to be a hybrid PSO; moreover, it explores
and develops the applicability of the PSO to cluster the data
vectors by combining it with fuzzy K-means. In the process of
doing so, the objective of the paper is twofold: to show that the
hybrid PSO algorithm can be used in the field of image
clustering and to develop a clustering algorithm in which fuzzy
K-means clustering is used to seed the initial swarm.
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2. METHODOLOGY
2.1 Improved Particle Swarm Optimization

With respect to optimization problems, most optimization
algorithms are committed to solving a problem by looking for
the optimal solution in a solution space that contains many
potential solutions. In this search procedure, most of the
optimization algorithms use the evolution operators on the
individuals to drive some to find the best position for an
individual. The quality of the optimal solution depends only on
the evolutionary result of the individual. In a PSO, however,
each individual has been regarded as a particle that has no
volume in the D-dimensional search space, and the operators
have not been used for the individuals yet. A swarm represents a
number of potential solutions for the optimization problem, and
each particle represents a candidate solution. The aim of a PSO
is to find the optimal particle position that results in the best
evaluation of the fitness function in this space. The performance
of the particle, which reflects the closeness of a particle to the
global optimum, is measured by using a predefined fitness
function fitness, which encapsulates the characteristics of the
optimization problem. The particle flies through this
multidimensional search space at a certain velocity and adjusts
its position dynamically according to its own flying experience
(the positions it has occupied and its flying pathway) and that of
the neighboring particles. Therefore, a particle adjusts its
position toward an optimal solution that is based on the best
position that the particle has found thus far and the best position
of the neighborhood particles.

In a PSO, each particle i includes three parts: 1) x;, the current
position of the particle; 2) v;, the current velocity of the particle;
and 3) pbest;, the personal best position of the particle.
Associated with particle i is the best position that the particle
has visited thus far; it is the position that yielded the highest
fitness value for the particle.

{)q (t+1), if fitness(x (t +1)) < fitness(pbest (1))
pbest (t+1) = )
pbest (1), if fitness(x (t +1)) > fitness(pbest (t))

Given that a particle swarm is composed of n particles, every
particle has a D-dimensional position vector x; = (xi1, Xi2, ****** )
xip) to indicate its position and a velocity vector vi = (vi,
Vig, o , vip) to determine its flying direction and distance.
When the particle flies in a D-dimensional solution space, it has
marked the best individual position pi=(pipiz, =** *** ,pip). The
particle swarm also has marked the best group position
Pea=(Pal,Dg2, " ,Dgp). Additionally, every particle has a fitness
value to evaluate itself, and the fitness value is a type of
quantization error that is calculated by an optimized function.

Initially, the particles are distributed randomly, and they update
themselves according to the best individual position pbestis and
the best group position gbestis. Then, the current optimal
particle in the solution space has been found, and the position
and velocity of the particle has been updated according to
equations 2 and 3.

v (t+1) = v, (1) + cri(pbest,, (1) - x,, (1)) +

2

G (gbeﬁ‘d (t) ~ X (t))
x,(t+)=x,)+v,(t+]) 3)
where i=1,2,+** *** ,n; N is the total number of particles in the

swarm,; gbestiqis the best position of the current group; pbestia is
the best position of the current particle; 7 and r, are random
numbers that are distributed uniformly in the range (0,1); and ¢;
and c; are learning factors (c¢; denotes the preference for the

particle’s own experience, and ¢, denotes the preference for the
experience of the group). Where ¢ is the time of the iteration,
and o is the inertia weight factor that controls the impact of the
former velocity on the current velocity. A large @ enhances the
global search capability of the PSO, and a small w enhances the
local search capability. The algorithm balances the global and
local search capabilities, and it decreases linearly while the
iterations increase. The factor w decreases linearly from wmax to
@min, and it is determined by the following equation:

max___ a)min

iter
max

w=w_ —

- X iter 4
where @ yq is the maximum value of the inertial weight factor,
®min 1s the minimum value of the inertial weight factor, iferma is
the maximum times of the iteration, and ifer is the current
iteration times. Shi and Eberhart(Shi and Eberhart, 2002)
considered that the initial inertial weight factor @ is set to 0.9,
and it decreased linearly from 0.9 to 0.4 while the iterations
increased.

According to equation 2, the velocity is calculated based on
three contributions: 1) a fraction of the previous velocity; 2) the
cognitive component, which is a function of the distance of the
particle from its personal best position; and 3) the social
component, which is a function of the distance of the particle
from the best particle found thus far.

The PSO is usually executed with the repeated application of
equations 2 and 3 until the specified number of iterations has
been exceeded or the velocity has no significant change. Figure
1 illustrates the flowchart of the standard PSO.

Initialize position X, velocity V, pbest and best of the population, set =0

v, (t+1) = v, (t)+cr(pbest, (t)-x, (1) +
c,n(gbest, (1)-x, (1))

X, (t+)=x,(O)+v, (t+])

fitness(pbest;)<
fitness(gbest)

<itermax

Fig. 1 Flowchart of the Standard PSO (Liang, Qin et al., 2006)

Learning from the Genetic Algorithm (GA), a crossover
operator has been used in the PSO to advance the global
searching capability and to avoid running into local extreme.
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GA uses selection, crossover, and mutation as genetic
operations to evolve the individuals. The crossover operation is
the process in which the parent individual pairs the
reorganization of a genetic exchange, which results in a large
number of new individuals and the generation of more gifted
individuals. The crossover mechanism selects the particle from
all of the particles in the cross-matching pool with a certain
degree of crossover probability, which has been determined
beforehand and remains unchanged throughout the crossover
process; it matches any two particles in the pool randomly and
determines the crossover point by the crossover weight wj,
which has been calculated by the fitness value of the particle,
and it generates the descendant particle by the crossover
operation(Hong and Ishikawa, 2008, Moradi and Abedinie,
2011). After updating the position vector x; and the velocity
vector v; of the particle based on equations 2 and 3, the
algorithm calculates a crossover with two particles, as follows:

child (x,) =w, x parent,(x,) +(1—-w,) x parent,(x,)  (5)
child,(x,) =w, x parent,(x,)+(1—w,) x parent, (x,)  (6)

(parent, (v,) + parent, (v,)) x | parent (v, )| @

child (v,) =
() |parenll (v,) + parent, (v, )|

(parent, (v,) + parent,(v,)) x | parent, (v, )|

child,(v,) = ®)

| parent,(v,)+ parent, (v, )|

The crossover process of the descendant particles is shown in
equations 5, 6, 7, and 8. In contrast to the standard PSO, this
improved PSO algorithm has a crossover operation that occurs
after updating the position and velocity, and instead of using the
parent particles, it uses the gender-ed descendant particles. The
crossover operation helps descendant particles to inherit the
advantages of their parent particles and maintains population
diversity. Moreover, it enhances the regional search capabilities
between particles and avoids the local optimum and premature
convergence traps, and it obtains good results(Starke, Hendrich
et al., 2017). This algorithm, which combined the PSO
algorithm with a crossover operator, has been regarded as the
Improved-PSO algorithm (IPSO).

2.2 Fuzzy K-Means Algorithm

In the K-means algorithm, each sample completely belongs to
some cluster in iteration according to the constraint condition.
In the real case, one pixel could relate to more than one class.
By introducing the concept of fuzzy theory into
the classification, each pixel can relate to several classes, where
the percentage representation of each of the classes, within a
pixel, can be represented by the corresponding membership
value. Thus, a fuzzy membership mechanism should be
introduced to the constraint condition and clustering criterion.
The clustering partition matrix U has been changed to be a
fuzzy matrix, and the membership degree function w(x;) has
been improved to be a fuzzy membership degree function) by
introducing the fuzzy index m. This index controls the mixture
degree of the different clusters; it is an adjustable liberty
parameter. This arrangement means that each sample belongs to
only one cluster when m=0, and each sample could belong to
several clusters when m>0. It is considered to be a soft
classification when a fuzzy clustering partition matrix U is used
to classify the sample set X. In the soft classification, the new
clustering criterion is as follows:
The objective function Jy:

ES)Y PRCH N CICTEN) SO
The constraint condition:

S, (x) =L 1< g, (x,) € [0,1],1<i<nm,1<k<c. (10)
k=1

Y(m-1) 7!
uk(x‘)—{g[d(x"zk)j } (1)

d(x,,z,)
z [, (x)]"x,
g[uk(x,)]'"

where m is a weighting coefficient m = 1. The larger m is, the
more fuzzy the classification; the classification becomes a hard
classification when m=1, and U=[ g (x,) 1o « c is the fuzzy

(12)

z

partition matrix. As before, a good clustering should make the
objective function J. be as small as possible by having many
iterations to search or the cluster centers z; and the membership
degree ui(x;). Thus, during the clustering process of FKM, when
each cluster center z; is near the sample x; with a high
membership degree ui(x;) to cluster &, J,» would be a minimum.
In FKM, the membership function, which is also the similarity
measurement, is a Euclidean distance in KM; however, it
became a probability function to compare the two sample
vectors. There is no direct assignment, but the membership
degree of each sample to the cluster £ has been used to adjust
the cluster centers z;.

2.3 IPSO-FKM Clustering Algorithm

As described above, the clustering process is a process for
finding the best clustering partition in the partition space, and
this process can also be referred to as an optimal problem. In
IPSO clustering, a particle is referred to as a clustering partition,
and the particle swarm is referred to as all of the candidate
clustering partitions; the partition space is the search space, and
the particle of gbest is referred to as the best clustering partition.

There are two pathways for combining a PSO with K-means.
One pathway is using the PSO to find the best cluster center
points for the K-means; the other pathway is using K-means to
calculate the cluster center points and using the PSO to optimize
those centroids points.

First, define the following parameters in image classification, N,
is the number of image bands, N.is the number of clusters to be
formed, N, is the number of pixel points in the image; x; is the
vector of the i-th pixel point, combined with the N, component,
zi is the vector of the £-th clustering centroids, » is the number
of particles in the swarm, Ci is the subset of data vectors that
form cluster k. In the context of clustering, given that the data
set is X={xig, i=1,2, *** ,Np; d=1,2,+** ;N»} and the clustering
centroids set is Z={zy, j=1,2, *** ,n; k=1,2, ** ,N.}, a single
particle j represents N. cluster centers vectors, and the position
vector of each particle is z;,

...... 32 Z ) (13)

A single particle represents a clustering partition, and other
particles in the swarm represent a number of candidate
clustering partitions. As described above, z; corresponding to
the clustering partition U; indicates one particle j in the swarm,
and zj is a sub-vector of the particle j. Each cluster center
adopts a real number code; the Z then has been changed to an
N x n one-dimensional row vector and has the membership
degree ui(x:). As is known, a good clustering means that the data
of the same class should be as close as possible, and the vectors
of each cluster’s center points should be as distant as possible.
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According to the clustering objective function and the clustering
law, the fitness function of the particle can be defined as:

Ne Np 2
finess =33 [, (2" v =z

The fitness measures the fitness of the particle j to the current
position z;.

(14

When setting the initial search range of the PSO, the range
would be too large, and the iteration would take a substantial
amount of time because the range setting still relies on the
human’s experience and the initial positions of the particle
swarm are generated randomly too far from the final iteration
result. However, if the initial cluster centers could be
generated by K-means, then the range should be smaller and
there should be less iteration than before. Therefore, K-means
has been selected to generate the initial cluster centers, and the
initial swarm of PSO has been generated in the required range;
the search range has been narrowed, and the iteration time has
been decreased.

According to Fig. 2, the implementation procedures of the
IPSO-FKM algorithm are as follows: 1) N, pixel points were
selected randomly from the input image. 2) The initial cluster
centers set z; has been generated by K-means. These points
can be regarded as one particle of the particle swarm in the
IPSO. 3) n-1 particles, the remaining particles of the swarm,
are initially random. 4) These particles have been optimized by
updating their position and velocity in IPSO, which can
produce a variety of clustering results until the fitness value
achieves the termination condition or the iteration achieves the
maximum number of iterations. After the optimization in IPSO,
the final Z is the optimal solution for the cluster centers. 5)
The cluster centers that correspond to the optimal particle are
referred to the initial solution of the Fuzzy K-means, and the
image can be classified in the FKM algorithm. 6) Calculate the
final membership degree and the fitness value of the particle
swarm to appraise the result.

Output the optimal particle of

gbhest

Input the image and set the
parameters

v
Select randomly N, pixels from the

input image

Output the optimal centers based
on the optimal particle

Generate the initial cluster centers
by K-means

Classify the input image with

Initialize the particle swarm Fuzzy K-means

v

Output the classification result and
apprise it with the final firness

Optimize the particle swarm based
on standard PSO algorithm

v
Crossover Calculating to modify
the particle swam (

l
Finish )

Figure. 2 The procedures of the IPSO-FKM algorithm

3. EXPERIMENTAL STUDY
3.1 Materials and Study Area

Hyperion, the first space-borne hyperspectral sensor, was
launched by NASA on the Earth Observing Mission 1 (EO-1)
spacecraft on November 21, 2000. Hyperion acquires data in a
push-broom mode, resolving 220 spectral bands (from 400 to

2500 nm) with a 30-meter resolution. The Level 1 Radiometric
product has a total of 242 bands, with 70 bands in VNIR (400 to
1000 nm) and 172 bands in SWIR (900 to 2500 nm), but only
198 bands are calibrated. Because of the overlap between the
VNIR and SWIR focal planes, only 196 unique channels are
available. The data used in this paper is the Hyperion L1 R
product provided by USGS, acquired on September 2, 2002.

The study area is located at the confluence of East Dongting
Lake and the Yangtze River. Dongting Lake is the second
largest lake in China; it is located in the northeast of Hunan
province along the south shore of the Jin River in the middle of
the Yangtze River, and it includes East Dongting Lake National
Nature Reserve, West Dongting Lake City Marsh Park, and
South Dongting Lake International Wetland Conservation Area.
Dongting Lake is a typical area for international river, lake, and
wetland research.

Hubei Province

—>

O Hunan Proyince
CHINA

13°40'E
1

113°60'E
1
<
el

113°80'E
1

29°30'0'N
!

20°28'0"N
1
T
29°28'0"'N

T
29°26'0"N

Image:Hyperspectral

29926'0'N
!

Sensor: Hyperion
Date:2002.9.2
Area:97Km2

29°24'0"

113°40'E

113°60'E 113°80'E

Figure. 3 The study area and materials

The area has a latitude that ranges from 29°22°36"" to
29°30°48"" and a longitude that ranges from 113°2°36"" to
113°8746""; it is located at the junction of river and lake areas
and city and rural areas. In the study area, there are not only
rivers, lakes, ponds, beaches, and marsh that all belong to nature
wetlands but also crop lands and aquaculture ponds that belong
to constructed wetlands, towns, and polders, which all belong to
non-wetlands. The study area is very suitable for extracting and
classifying information on wetlands with the hyperspectral data
(Fig. 3), which can be grouped into the following six classes
based on the class scheme from the Convention on Wetlands:
river, lake, beach land, reed land, constructed wetlands
including dry land and paddy fields, and others that belong to
non-wetlands.

3.2 Initial Parameters

By using the FORTRAN language and MATLAB condition, the
third dimension IPSO-FKM program for image classification
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has been developed based on the principle of the PSO and K-
means improved algorithm. Through setting the parameters and
iterating many times, the initial parameters can be determined.

The initial parameters for the algorithm program include the
number of clustering clusters N.; the number of image pixels Ny;
the number of image bands Ny; the number of particles in the
swarm #; the number of maximum iterations for the termination
conditions ifermar; the learning factors c¢; and cz; the inertial
weighted factors wmax and @min; the range of velocity vima; and
the fuzzy index m.

Parameter Value Parameter Value
Nc 6 ci, C2 2.8,1.3
N, 107786 itermax 50
No 3 Vinax 4

n 30 Omax 0.9
m 3 Omin 0.4

Table 1. Setting of the initial parameters

According to Table I, the parameters of N., N,, and N, are
provided by the user; the parameter learning factors, the inertial
weight factor, and the fuzzy index m have been discussed
before, which means that the remainder are n, itermax, and Vax.
Additionally, the settings of iterma and vma are determined after
many experiments. With respect to the parameter n, a smaller
value would go against a cosmopolitan search, but a larger
value would augment the computational complexity. With
respect to the range of the velocity vma, this parameter can
control the movement action effectively; it is also used to avoid
the “explosion” phenomenon in the search procedure. The
setting of via relies on a concrete situation: a smaller value for
vmax can lead to a local optimum, and the particle finds it
difficult to jump out of the local optimal point; a larger v
leads to having a particle cross the global optimum, and the
search procedure cannot converge effectively. Therefore, the
value of v has been set to 4 after many experiments.

3.3 Procedures of the Experiment

Hyperion Data ‘

Band removal

Radiometric
Calibration

Striping pixels

Data Pre-processing
removal

Image registration
- v
Field : ;
observation Data D1m§n510n ¢ MNF Transformaion
Reduction
data
' , v '
. IPSO-
MLC FKM 1PSO FKM
\ \ |
A2 v
Classification Convergence
Evaluation Analysis

Fig. 4 Flowchart of the experiment

In Fig. 4, the processes of the experiment contain four parts: 1)
data preprocessing; 2) data down-scaling; 3) image
classification by using these algorithms with a program
compiled in the FORTRAN language; and 4) result analysis on
the classification precision and fitness convergence.

The main pre-processing procedures include band removal,
radiometric correction, strip pixels removal, and image
registration. First, 87 of the 242 bands were deleted. Second, the
image of 155 bands has been converted to a radiance image
with the coefficient provided by the EO-1 User Guide. Third,
strip pixels in the image have been corrected. Some pixels in a
strip usually have a lower DN value than adjacent pixels. Thus,
these strip pixels can be detected and replaced by the average of
the immediately adjacent columns. Finally, the Hyperion data
have been registered to the panchromatic band of the ALI data,
which have already been geometrically corrected.

A hyperspectral image has hundreds of bands, and spectrally
adjacent bands are wusually statistically correlated. The
redundant data are useless for image classification, which
implies that data dimension reduction is necessary and can
remove the redundant data effectively. PCA (Principal
Component Analysis), MNF (Minimum Noise Fraction), and
DWT (Discrete Wavelet Transform) are usually applied in data
dimension reduction(Datt, Mcvicar et al., 2003). Finally, the
first three MNF bands have been chosen according to the
eigenvalues and the spectral characteristics of the surface
materials. Then, the experimental image data that has been
acquired from the RGB combination image is based on these
three bands.

After the data preprocessing and down-scaling on the input data,
the images with 3 bands and 107,787 pixels have been classified
by these algorithms. To compare the results of the classification
and to analyze the fitness convergence situation, FKM and
IPSO have been selected to compare with the IPSO-FKM
algorithm. Maximum Likelihood Classification (MLC) has also
been used to classify the image; for the truth data, the
classification result of MLC has been used to evaluate the
classification accuracy of FKM, IPSO, and IPSO-FKM.
Moreover, the analysis of fitness convergence is applied to the
three algorithms.

4. RESULTS AND DISCUSSION

This chapter discusses the results of the application of three
algorithms to remote sensing hyperspectral image classification.
By comparing the classification results of Fuzzy K-means and
IPSO with that of IPSO-FKM based on the truth data, we
analyzed the classification precision in terms of the three
aspects and the convergence speed of the new hybrid clustering
algorithm. The three evaluation methods are discussed first, and
then the fitness convergence and classification precision are
evaluated.

4.1 Evaluation Methods

Three evaluation methods are selected to compare the results of
the three clustering algorithms’ application of remote sensing
hyperspectral image classification. From the pixel aspect, by
selecting dispersed sample data from the classified image and
comparing it with the truth data acquired from the classification
result of MLC and the field investigation data, the first method
evaluates the overall classification accuracy and the Kappa
coefficient calculated from the confusion matrix. The confusion
matrix is calculated by comparing the classified image and the
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truth image. The overall classification accuracy p. represents the
classification correct rate for the truth data and the Kappa
coefficient kappa, which is calculated from the confusion
matrix and represents the goodness of fit to the truth data. The
pe calculates only the pixels on the diagonal of the confusion
matrix, but kappa even considers the omission and commission
error out of the diagonal of the confusion matrix. The overall
accuracy and Kappa coefficient are as follows:

>,

pe="1—x100% (135
N
NZXiiizXHXH’ (16)
Kappa = —=1 _ i=1
N2 7ZX1+X+i
i=1

where Xi; represents the number of pixels for which, on the i-th
row and the j-th column of the confusion matrix, this number is
also the number of correctly classified pixels; N represents the
total number of pixels used for the accuracy assessment; c is the
number of all of the columns and is also the number of
categories; X+ represents the number of total pixels on the i-th
row; and X-; represents the number of total pixels on the j-th
column.

From the feature aspect, the second method evaluates the
discrepancies of the attributes of image features by calculating
the inter-distance and intra-distance. The qualities of the
respective clustering algorithms are measured according to the
following three parameters: the quantization error as defined by
the fitness; the intra-cluster distances, which means the distance
between the data vectors within a cluster; and the inter-cluster
distances, which means the distance between the centroids of
the clusters. The objective of data clustering is to minimize the
intra-cluster distances and to maximize the inter-cluster
distances. The smaller dmad(X, z;) and the larger dmin(z)) mean
that most of the pixels have been classified into the correct class,
and most of the classes have better classification results and
better performance.

d, (X.z)= max {3 d(x,.2; ) /|Cls (17)

Vx,eC),

(18)

d,.(z,)= kagg}#k? {d(z,,.2,)}

From the aspect of information entropy, the third method
evaluates the partition entropy according to the number of final
cluster centers and the final membership degree matrix. The
following define the partition coefficient V,. and the partition
entropy Ve, and the larger V. and the smaller V). indicate better
clustering.

Nc Np

Vie= (2 4(x)" )/ N,

k=1 i=1

I/pe = _(z Z luk (xi)z 10g2 /uk (xi )) / Np (20)

k=1 i=1

(19)

The first method measures the classification character of the
pixel, the second method measures the spatial geometry
character of the pixel, and the third method measures the
information quantity of the pixel. Measurement of the three
aspects of the IPSO-FKM algorithm and comparison with FKM
and IPSO can comprehensively evaluate the application
performance of the IPSO-FKM in image classification.

4.2 Analysis of Fitness Convergence

Fig. 5 illustrates that in the fitness convergence behavior of the
three algorithms, the final fitness is referred to as a quantization
error (the points have been circled by the red circle in Fig. 5),
which indicates the integrity of the fitness convergence in which
3.684 for FKM is the highest and 2.427 for IPSO is close to
2.295, which was obtained for IPSO-FKM. As indicated in Fig.
5, the fitness of the FKM algorithm converged after 16
iterations, the IPSO-FKM algorithm converged after 36
iterations, and the IPSO algorithm converged at 43 iterations.
FKM has the fastest convergence speed but the largest
quantization error, IPSO has a lower quantization error but the
fitness convergence speed is too slow, and IPSO-FKM has a
lower quantization error than FKM and a faster fitness
convergence speed than IPSO.
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Figure.5 Comparison of the fitness convergence for three
algorithms
4.3 Results Evaluation and Comparison

After the image classification with the three algorithms, six
objects in the image were extracted, and these six objects were
classified into six surface feature types based on the field
investigation data. Fig. 6 illustrates the classification results of
the three algorithms, which were obtained by making a
comparison with the truth data (the truth data are obtained by
the field investigation and MLC classification), which was
directly based on the spatial distributions of the beach, reed,
crop land, and other ground objects. Direct observation suggests
that IPSO-FKM is better than the other methods.
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Figure. 6 The classification results of the three algorithms
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A total of 100 sample points were selected randomly from the
truth data to compare with the results of the three algorithms;
then, every measurement index of the results was calculated.

Table 2 illustrates that the IPSO-FKM algorithm is better than
the others in terms of the classification accuracy and the spatial
character, but it is not better than IPSO in terms of the
information quantity and is not better than FKM in terms of the
number of iterations.

Algorithm FKM IPSO IPSO-FKM

e 63.19%  70.98% 72.21%
Kappa 0.5964  0.6782 0.6964
Final fitness 3.684 2427 2.295
l\flfl’;gué?s;:;iz 12716 8.425 7.991
E/{L?t‘;“é?s;:fcae 23.684 30362 32.403

Iterations 16 43 36
Ve 0.7886  0.8012 0.7929
Vye 02803  0.2681 0.2779

Table2. The comparison of the three methods

5. CONCLUSIONS

This paper discussed the PSO and K-means algorithms,
introduced the fuzzy membership function and the crossover
operator into the mutation operation, and developed them to be
the IPSO-FKM algorithm, which is successfully applied to
wetlands information extraction and classification based on
hyperspectral remote sensing image-Hyperion.

Moreover, this paper also evaluated the classification results of
the experiments in terms of three aspects. In terms of the pixel
aspect, the overall classification accuracy of IPSO-FKM
reached 72.21%, which is better than 63.19% for FKM and
70.98% for IPSO; and the Kappa coefficient is 0.6964, which is
better than 0.5964 for FKM and 0.6782 for IPSO. In the feature
aspect, the maximum inter-cluster distance of IPSO-FKM is
7.991, which is smaller than 12.716 for FKM and 8.425 for
IPSO; the minimum intra-cluster distance is 32.403, which is
larger than 23.684 for FKM and 30.362 for IPSO. In the aspect
of information entropy, the partition coefficient is 0.7929,
which is not better than 0.8012 for IPSO, but the partition
entropy is 0.2779, which is better than 0.2803 for FKM and
0.2681 for IPSO. Most of the evaluation indexes of IPSO-FKM
are better than those of the other methods.

Additionally, this paper analyzed the fitness convergence of
IPSO-FKM compared with FKM and IPSO. The number of
iterations for IPSO-FKM is 36, which is smaller than 16 for
FKM but larger than 43 for IPSO, and the final fitness value of
IPSO-FKM is 2.295, which is better than 3.684 for FKM and
2.427 for IPSO. Thus, the analysis result of the fitness
convergence suggests that the IPSO-FKM algorithm has a better
searching velocity and better convergence at lower quantization
errors.

Future studies will extend the fitness function to optimize the
inter-cluster distance and intra-cluster distance. More elaborate
tests on higher dimensional problems and large numbers of

patterns will be performed. The clustering algorithms will be
extended to dynamically determine the optimal number of
clusters. Additionally, future research will explore the influence
of the number of particles, as well as the number of iterations

and other PSO parameters on the performance of the PSO.
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