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ABSTRACT:  

 

Land Use and Land Cover (LULC) information is an important data source for modeling environmental variables, so it is essential to 

develop high quality LULC maps. The hundreds of continuous spectral bands gathered with hyperspectral sensors provide high spectral 

detail and consequently confirm hyperspectral remote sensing as an appropriate option for many LULC applications. Despite increased 

spectral detail, issues like high dimensionality, huge volume of data and redundant information, mean that hyperspectral image 

classification is a complex task. It is therefore essential to develop classification approaches that deals with these issues. Since 

classification results are directly dependent on the dataset used, it is fundamental to compare and validate the classification approaches 

in public datasets. With this in mind, aiming to provide a baseline, four classification models in the relatively new hyperspectral 

HyRANK dataset were evaluated. The classification models were defined with three well-known classification algorithms: Spectral 

Angle Mapper (SAM), Support Vector Machine (SVM) and Random Forest (RF). A classification model with SAM and another with 

RF were defined with the 176 surface reflectance bands. A dimensionality reduction with principal component analysis was carried 

out and a classification model with SVM and another with RF were defined using 14 principal components as features. The results 

show that SVM and RF algorithms outperformed by far the SAM in terms of accuracy, and that the RF is slightly better than the SVM 

in this respect. It is also possible to see from the results that the use of principal components as features provided an improvement in 

the accuracy of the RF and an improvement of 28% in the time spent fitting the classification model. 

 

 

1. INTRODUCTION     

The pace of changes in Land Use and Land Cover (LULC) due 

to human activity are unprecedented. Activities pursuing 

economic objectives, such as wood exploration, cattle ranching 

and agriculture, drive LULC changes mainly through 

deforestation in tropical countries. LULC changes increase the 

probability of erosion and flooding occurrence and lead to 

problems such as loss of biodiversity and increase in greenhouse 

gases emissions (Mas, 1999). LULC information therefore has a 

key role in environmental and climate change studies 

(Henderson-Sellers and Pitman 1992), and the requirement of 

reliable and high quality LULC maps is a global concern, since 

these provide baseline information for planning and evaluating 

natural resource management, modeling environmental variables 

and developing sustainable practices (Adam et al., 2014; Gómez 

et al., 2016).  

 

Since the 1970s, remote sensing imagery has provided an 

uninterrupted and reliable set of information enabling the 

mapping and monitoring of the Earth’s surface (Petitjean et al., 

2012; Maus, et al., 2016). The synoptic and multitemporal 

characteristics, as well as the large coverage area, provide 

capabilities that make satellite imagery the most suitable 

approach for mapping large areas, taking account of time and 

expense (Kavzoglu and Colkesen, 2009, Puletti et al., 2016). 

While remote sensing satellites have the capability of capturing 

landscape imagery, extracting LULC information from these data 

requires effective image processing techniques. 

 

                                                                 
* Corresponding author 

Although satellite images have been used for decades for LULC 

mapping, and the remote sensing community has been seeking 

improvements in image classification techniques throughout that 

time, there is still room for improvement in LULC mapping 

through digital image processing. The construction of LULC 

products through image classification techniques is a challenging 

task, due to several variables related to the process (Shao and Wu, 

2008, Manandhar et al., 2009, Khatami et al., 2016). Among the 

several elements that influence the accuracy of remote sensing 

image classification, defining the image and the classification 

algorithm are particular issues.  

 

A few decades ago, hyperspectral remote sensing arose offering 

high potential to improve LULC mapping (Biocudas-Dias et al., 

2013). The possibility of acquiring hundreds of continuous 

spectral bands with narrow bandwidths, providing more spectral 

detail than coarse bandwidths acquired with multispectral 

sensors, provided new opportunities for LULC applications 

(Chutia et al., 2016; Ghamisi et al., 2017). However, higher 

spectral detail comes with high dimensionality and a huge 

volume of data, which leads to an issue known as the Hughes 

phenomenon. This explains that increasing the number of 

predictor features potentially adds information to separate the 

classes, however the complexity is also increased and the number 

of samples in short dataset may not be enough to characterize this 

complexity, therefore adding more features rather than increasing 

the classification accuracy may actually decrease the accuracy 

(Maxwell et al., 2018).  
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Hyperspectral image classification is also a challenging task due 

to the limited number of available training samples, the redundant 

information presented in the features, the uncertainties related to 

atmospheric or topographic effects and the influence of spatial 

resolution (Ghamisi et al., 2017). Choosing an algorithm that 

deals with these issues is therefore essential to get high accuracy 

LULC products through hyperspectral image classification. 

Nowadays, machine learning algorithms like Support Vector 

Machine (SVM), Random Forest (RF) and Neural Nets (NN) 

have been widely used by the remote sensing community for 

hyperspectral image classification (Ghamisi et al., 2017), 

although the results provided by each are dependent on the 

dataset used, therefore studies that evaluate and compare them in 

the same dataset are of particular interest.  

 

For this reason, and due to the lack availability of public 

hyperspectral datasets of large size and with several land cover 

classes, the International Society for Photogrammetry and 

Remote Sensing (ISPRS), commission III, working group III/4, 

hyperspectral image processing, developed the HyRANK 

Hyperspectral Satellite Dataset (Karantzalos, et al., 2018), 

aiming to provide a dataset where researchers will be able to 

validate and compare new LULC classification approaches. 

 

Based on that, the accuracy of four classification models defined 

with three well-known algorithms carrying out the classification 

on the HyRANK dataset were evaluated and compared in this 

paper. The goal was to provide a baseline for future research in 

LULC classification with the HyRANK dataset. The algorithms 

adopted were the traditional Spectral Angle Mapper (SAM), 

which in the recent past has been widely used in the classification 

of hyperspectral data, and two state-of-the-art machine learning 

algorithms, SVM and RF. This paper is organized as follows: an 

overview of the classification algorithms is presented in section 

2, in section 3 the dataset, the classification process and the 

metrics used in the evaluation process are explained, in section 4 

the results and discussion are produced. Finally, the conclusions 

are given in section 5. 

 

2. CLASSIFICATION ALGORITHMS 

A short overview of the classification algorithms SAM, SVM and 

RF is presented in this section with the aim of providing a 

background to these classifiers to help in understanding the 

sections which follow. More details about SAM, SVM and RF 

can be found, respectively, in Kruse et al. (1993), Cortes and 

Vapnik (1995), and Breiman (2001). 

 

SAM is a non-parametric supervised algorithm proposed in 

Kruse et al. (1993). The algorithm measures the similarity 

between two spectra, where one corresponds to the pixel to be 

labeled and the other is a reference spectrum for the LULC class. 

The spectra are treated as vectors, and their dimension is defined 

by the number of image bands. The similarity measurement is the 

angle between the two spectra from the origin, and it can be 

computed with Equation 1, where 𝑡 is the pixel spectrum and 𝑟 

the spectrum for the LULC class. 

 

 
𝜃 =  cos−1 (

𝑡 . 𝑟

‖𝑡‖ . ‖𝑟‖
) (1) 

 

SAM is less sensitive to illumination variations than other 

similarity measurements (i.e. Euclidean distance), since the 

changes in illumination have a direct effect on the scale and an 

indirect effect on the orientation, considering the line that 

connects the pixel and the origin of the multidimensional feature 

space. In this case, even with changes in the pixel digital number, 

it will be aligned with its class (Kruse et al., 1993). However, the 

need for pure reference spectra is the major drawback of this 

classifier. 

 

Machine learning classifiers have become a major focus for the 

remote sensing community since such algorithms deal with high-

dimensional feature space and are able to model complex class 

signatures (Maxwell et al., 2018). Nowadays the non-parametric 

machine learning algorithms SVM, RF and NN are state-of-the-

art for remote sensing image classification (Khatami et al., 2016), 

producing higher levels of accuracy than parametric algorithms 

like Maximum Likelihood (Yu et al., 2014). 

 

SVM finds the optimal hyperplane that separates the classes in a 

multi-dimensional feature space. The best decision boundary is 

that which minimizes the errors and maximizes the distance 

between the training samples (Cortes and Vapnik, 1995). SVM is 

especially useful for small training datasets since it relies only on 

observations located on the decision boundaries (support vectors) 

(Mountrakis et al., 2011). This advantage makes SVM more 

relevant for remote sensing applications in particular, due to the 

problem of getting training samples which normally require field 

work and consequently high cost (Tuia et al., 2011). 

 

Despite the advantages, SVM has a drawback in the high number 

of parameters to be tuned, a high computational cost and the need 

to choose a kernel function (Mountrakis et al., 2011). The kernel 

function is used to transform the n-dimensional feature space into 

a larger dimension space where the classes are linearly separable. 

The known kernel options are linear, polynomial, sigmoid, and 

the radial-base function (RBF) (Kavzoglu and Colkesen, 2009). 

Mountrakis et al. (2011) highlights that RBF kernel is the one 

most suitable for remote sensing data classification. 

 

RF algorithm is an ensemble of decision trees. It has been used 

in several remote sensing classification works because of its 

simplicity and good accuracy results (Belgiu and Drăguţ, 2016).  

 

Decision tree is a recursive split approach of the input data (Pal 

and Mather, 2003). The splits are performed starting from a root 

node (first level of the tree) up to the leaf nodes, decreasing the 

entropy at each split. The leaves are the last level of the tree and 

it is where the entropy is at its lowest possible. The intention is 

to have only samples from the same class in the leaves (Ho, 

1995). There are several split nodes in the path that goes from the 

root node to the leaf node. These contain decision rules based on 

the available features and a threshold applied to the features 

chosen. 

 

Despite the decision trees being extremely fast and simple, they 

are very sensible to noise and frequently overfit the training 

samples. Because of that, a decision tree can be classified as a 

weak learner. To overcome these drawbacks an ensemble of 

decision trees is combined in an RF (strong learner). In the RF 

algorithm the trees of the forest must be uncorrelated, each tree 

being unique, hence the random subspace (feature bagging) and 

bootstrap aggregating (bagging) techniques are applied. 

 

Bootstrap aggregating, presented by Breiman (2001), consists of 

the random selection,  with replacement, of a subset of samples 

from the training dataset. The random subspace, proposed by Ho 

(1995), consist of a randomly selected subset of features from all 

the input features at each node, and, from the new subset of 

features chosen, considering the one which splits the node that 

produces the smaller entropy at the next level. 
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As stated before, both techniques minimize the model variance 

without increasing the trend. So, while a single decision tree is 

sensitive to noise, the average forecast for an ensemble of trees 

is not sensitive, so long as the trees are uncorrelated  (Friedman 

et al., 2001). After growing the forest, each tree casts a vote for a 

class and the label is defined by the majority vote. The main 

advantages of the RF algorithm are in dealing well with noise, 

having fewer parameters to be tuned, and the low computational 

cost. 

 

3. MATERIAL AND METHODS 

3.1 Dataset 

As stated before, in this work the HyRANK dataset, developed 

by a scientific initiative of the ISPRS, WG III/4, was used. The 

main goal with the HyRANK dataset is to provide a dataset with 

hyperspectral images along correspondent ground truths, to 

enable the scientific community to validate new classification 

approaches against the state-of-the-art methods. 

 

HyRANK is composed of five hyperspectral images gathered 

with the Hyperion sensor Earth Observing-1. After a pre-

processing step, these images were provided with 176 surface 

reflectance bands. The ground truths from two (Loukia and 

Dioni) of five images were provided. 14 LULC classes were 

annotated in the ground truth following the CORINE Land Cover 

principles. These classes are: Dense Urban Fabric, Mineral 

Extraction Sites, Non-Irrigated Arable Land, Fruit Trees, Olive 

Groves, Broad-leaved Forest, Coniferous Forest, Mixed Forest, 

Dense Sclerophyllous Vegetation, Sparse Sclerophyllous 

Vegetation, Sparsely Vegetated Areas, Rocks and Sand, Water 

and Coastal Water. The Loukia and Dioni images, as well as the 

respective ground truths, are depicted in Figure 1. 

 

As well as being a dataset, HyRANK is intended to be an 

evaluation online platform in which it will be possible to upload 

the LULC results for the images Erato, Nefeli and Kiriki. The 

overall accuracy of the model will be estimated in this platform 

and will be made available to the community in order to compare 

results from different classification approaches. Further details 

regarding the dataset and the accuracy assessment platform can 

be found in Karantzalos et al. (2018).  

 

At the time of writing, the images are already available, but the 

online assessment platform is not yet. In order to obtain, train and 

evaluate classification models, the ground truths from Loukia and 

Dioni images were therefore split in two sets. 85% of the ground 

truth were assigned for training the classification algorithms, and 

the remaining 15% were applied to classification model 

evaluation. 

 

3.2 LULC classifications description 

All steps to implement the LULC classification and evaluation 

were performed using available libraries in python. The SAM 

algorithm is available in the spectral package and the machine 

learning algorithms are available in the scikit-learn package 

(Pedregosa et al., 2011). 

 

To perform the SAM’s classification we used the 176 surface 

reflectance bands as features, so each class and pixel spectrum 

has a 176-dimension. The 14 LULC classes had their reference 

spectra defined based on the training set, all reference spectra 

were assembled through the mean of all pixels’ spectra belonging 

to the correspondent LULC class. In the classification process, 

each pixel spectrum was compared to the 14 reference spectra, so 

that 14 similarity measurements were produced for each pixel. 

The label of each pixel was defined as the same as the most 

similar (lower angle) reference spectrum. 

 

As stated in Section 2, the SVM algorithm has high 

computational cost, which makes it not feasible to use 176 

surface reflectance bands as input features. Another issue related 

to the feature dimension is the Hughes phenomenon, which can 

lead to a decrease in the accuracy of the classification models as 

stated in Section 1. A dimensionality reduction was therefore 

carried out in the dataset using the principal components analysis 

(PCA). More details about PCA can be found in Johnson and 

Wichern (2002). The PCA parameters were fitted over the 

training samples, but, before that, the training samples were 

balanced, since unbalanced classes could influence the 

eigenvectors of the PCA. Each of the 14 LULC classes was 

balanced through replication. In the sequence, the PCA 

transformation was performed over the dataset, verifying that 

99.9% of the information was presented in 14 principal 

components, these components were selected as significant input 

features. 

 

For the SVM classification it was decided to use the RBF kernel, 

since it is the most suitable option for remote sensing 

classification. Hence, knowing that SVM with this kernel option  

 

Figure 1. (a) Dioni image composition B25G90R160 (b) Dioni ground truth (c) Loukia image composition B25G90R160 (d) Loukia 

ground truth 
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assumes all features are centered around 0 and have variance in 

the same order, the 14 principal components were standardized 

by removing the mean and scaling to unit variance before the 

training step. In the sequence, the SVM training was performed 

using the 14 significant principal components as input features. 

The classification model having been defined, the classification 

was carried out and the LULC maps produced for Loukia and 

Dioni images. The SVC class from the scikit-learn package was 

used to perform the multiclass classification with SVM. As 

stated, the RBF kernel function was used, the class_weight was 

defined as balanced and other parameters were set as default.  

 

Since it was desirable to compare the RF algorithm with the other 

classifiers and verify whether the Hughes phenomenon would 

disturb the accuracy of the models, two classification models 

were defined with the RF algorithm. In the first classification 

model the 176 surface reflectance bands were used and in the 

second the input features were 14 significant principal 

components. The classification was performed with the 176 

features since it was known that the RF has low computational 

cost, so using all available features would not be a time problem, 

as it is with SVM. The two classification models defined, the 

classifications were carried out and the LULC maps produced for 

Loukia and Dioni images. For this work the 

RandomForestClassifier class from the scikit-learn package was 

used. The number of trees was set equal to 200 and the depth 

equal to 20. These values were defined after a tuning process 

through which it was realized that the overall accuracy would not 

improve significantly, thereby increasing these parameter values. 

 

3.3 Assessment of the accuracy of classification models  

Metrics computed from the confusion matrix were used for the 

evaluation of the classification models. 15% of samples from the 

Dioni and Loukia ground truths were applied in the construction 

of the confusion matrix. These samples were randomly selected 

before definition of the classification models, so these samples 

were not used to fit the classification models. The metrics applied 

for the classifications accuracy assessment were: Overall 

Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy 

(UA), Kappa coefficient (K) and F1-score. The OA is a metric 

for general evaluation, which is computed through the sum of 

correctly classified pixels divided by the total of pixels in the 

validation set. The PA, UA and F1-score metrics were used to 

measure the quality of the classification for each LULC class. 

The PA indicates the omission of pixels for a class, the UA 

expresses the commission of pixels and the F1-score is the 

harmonic mean between the PA and UA, so it represents how 

well the model classifies each class. The K coefficient as the OA 

is a measure of general evaluation, although, it can be considered 

a more representative metric since wrongly classified samples are 

considered in its computation. Further details regarding the 

metrics used in the classification accuracy assessment can be 

found in Congalton (1991). Aiming to compare the classifiers, 

the classification model fit time was also measured for each of 

the 4 classifications performed. All experiments were carried out 

on a machine with an Intel Core i7-5500, 2.4 GHz clock and 8Gb 

RAM. 

 

4. RESULTS AND DISCUSSION  

Figure 2 shows the LULC maps for Dioni (left) and Loukia 

(right) images produced through 4 different classification models 

as described in Section 3.2. The metrics used for the accuracy 

assessment of the classification models, as well as the time to fit 

them, are shown in Table 1. 

 

The most noticeable issue in the LULC maps appeared through a 

visual analysis of the Dioni LULC map built with the SAM 

algorithm,  Figure  2  (a).  The Dense  Urban  Fabric   class   was  

 
Figure 2. LULC classification for Dioni image through (a) SAM (b) SVM (c) RFbands (d) RFpca – LULC classification for Loukia 

image through (e) SAM (f) SVM (g) RFbands (h) RFpc 
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 SAM  SVM  RFbands  RFpca 

Overall Accuracy 0.48  0.88  0.91  0.92 

Κ coefficient  0.41  0.86  0.89  0.91 

Fit time  61.38 s  123.38 s   43.77 s  31.2 s 

 PA UA F1  PA UA F1  PA UA F1  PA UA F1 

Dense Urban Fabric 0.15 0.58 0.23  0.85 0.90 0.87  0.93 0.78 0.85  0.94 0.83 0.88 

Mineral Extraction Sites 0.29 0.83 0.43  1.00 0.97 0.98  0.93 0.78 0.85  1.00 0.88 0.93 

Non-Irrigated Arable Land 0.66 0.66 0.66  0.81 0.93 0.87  0.92 0.89 0.91  0.94 0.91 0.92 

Fruit Trees 0.11 0.49 0.18  0.61 0.89 0.73  0.91 0.54 0.68  0.96 0.62 0.75 

Olive Groves 0.19 0.23 0.21  0.95 0.88 0.91  0.91 0.90 0.91  0.91 0.96 0.94 

Broad-leaved Forest 0.33 0.77 0.46  0.57 0.88 0.69  0.90 0.68 0.77  0.92 0.60 0.73 

Coniferous Forest 0.46 0.77 0.58  0.78 0.90 0.84  0.96 0.86 0.90  0.96 0.83 0.89 

Mixed Forest 0.30 0.68 0.42  0.47 0.87 0.61  0.74 0.65 0.69  0.79 0.68 0.73 

Dense Sclerophyllous Veg. 0.77 0.48 0.59  0.92 0.81 0.86  0.90 0.91 0.90  0.90 0.93 0.92 

Sparce Sclerophyllous Veg. 0.79 0.36 0.50  0.92 0.89 0.91  0.89 0.95 0.92  0.92 0.95 0.94 

Sparcely Vegetated Areas 0.29 0.25 0.27  0.88 0.93 0.90  0.91 0.90 0.90  0.96 0.92 0.94 

Rocks and Sand 0.42 0.35 0.38  0.99 0.96 0.97  0.96 0.94 0.95  1.00 0.96 0.98 

Water 0.97 0.89 0.93  1.00 1.00 1.00  1.00 1.00 1.00  1.00 1.00 1.00 

Coastal Water 0.69 0.89 0.78  1.00 1.00 1.00  1.00 0.98 0.99  1.00 0.99 1.00 

Table 1 – Evaluation metrics used for evaluation of the classification approaches, Overall Accuracy (OA), Kappa index (K), Model 

fit time, Producer’s Accuracy (PA), User’s Accuracy (UA) e F1-score 

 

overestimated, since the area estimated for this class is larger than 

its real area, as can be seen in Figure 1 (a). However, this is not 

an unexpected result considering that this class embraces 

different land cover types (i.e. vegetation and bare soil) which 

can diminish its classification accuracy, since SAM requires pure 

reference spectra to work well. Another noticeable issue in this 

LULC map is the confusion of the Water class with Coastal 

Water, which can be explained by the similar spectral signatures 

of these classes. 

 

With regard to the metrics generated for accuracy assessment of 

the classification models, it can be seen that the two models 

defined with the RF algorithm presented the best performances, 

with a K coefficient equal to 0.91 and 0.89 for the principal 

components and the 176 surface reflectance bands as input 

features respectively. Despite the almost insignificant 

improvement, a slightly better performance was achieved using 

principal components as features. This can be related to the 

Hughes phenomenon, since the model complexity is higher for 

the 176 features than for the 14 features. The RF classification 

model performances were followed by the model fitted with 

SVM which had a K coefficient equal to 0.86 and SAM’s 

classification model with K coefficient equivalent to 0.41. So, as 

expected, both machine learning algorithms outperformed by far 

the classification with SAM. Again, this can be related to SAM’s 

need for pure reference spectra, which is almost impossible to get 

for moderate spatial resolution imagery like the Hyperion sensor 

which has spatial resolution of 30 meters  

 

In general, UA and PA for the machine learning algorithms were 

around or more than 0.80 for almost every class, the exceptions 

being the Fruit Trees, Broad Leaved Forest and Mixed Forest 

classes. The Mixed Forest class presented a PA of 0.47 for SVM, 

PA and UA of 0.74 and 0.65 respectively for RFbands; and UA of 

0.68 for RFpca. The Fruit Trees class presented a PA of 0.61 for 

SVM, with a UA of 0.54 and 0.62 for RFbands and RFpca 

respectively. The Broad Leaved Forest class presented a PA of 

0.57 for SVM and a UA of 0.68 and 0.60 for RFbands and RFpca 

respectively. For the SAM, the UA and PA presented lower 

values achieving averages of 0.58 and 0.45, respectively. The 

exception, in this case, was the Water class which reached a PA 

of 0.97 and UA of 0.89, these values are close to the UA and PA 

achieved with the machine learning algorithms, which can be 

explained by two facts. Firstly, the spectral signature for the 

Water class is very similar to the Coastal Water class, but 

extremely different to the other classes. Secondly, it could be 

linked to the higher likelihood of getting a pure reference 

spectrum for the Water, which is essential to SAM. 

 

Regarding the F1-score for SAM’s classification model, the 

Dense Urban Fabric, Fruit Trees, Olive Groves and Sparsely 

Vegetated Areas classes were under 0.3 showing that the 

boundary limits in the features space were poorly defined for 

these classes. In general, the RFpca classification model 

performed better than RFbands and SVM classification models, 

since the OA for the former was slightly higher than for the latter. 

Although, looking for the F1-score, it can be seen that the Broad 

Leaved Forest and Coniferous Forest classes had their boundary 

limits better defined in the feature space by the RFbands 

classification model, while the Mineral Extraction Sites class was 

better classified with SVM, since its F1-score was higher.  

 

Considering the computational time, the RF algorithm again 

outperformed the other algorithms, the RFpca was the fastest 

taking just 31.2s to fit. This was followed by the RFbands with 

43.7s. The SAM and SVM were, respectively, almost twice and 

four times slower than RFpca. However, taking into account just 

the time to fit the classification models, if the time to perform the 

PCA is considered, the RFpca and SVM would perform slower 

than the others. 

 

5. CONCLUSION 

In this work, the evaluation of four classification models defined 

with three well-known classification algorithms, SAM, SVM and 

RF, was assessed for the LULC classification using the public 

HyRANK dataset. The results show that the SVM and RF 

algorithms, outperformed by far the SAM in terms of accuracy of 

the classification models and that the RF is slightly better than 

the SVM in the same respect. From the results it can also be seen 

that the of use principal components as features provided a slight 

improvement in the accuracy of the RF and an improvement of 

28% in the time spent to fit the classification model. 

 

Although the results obtained for the machine learning 

algorithms, RF and SVM, are considered excellent, with a K 

coefficient higher than 0.8, there is still room for improvement. 

One possibility is to perform the selection of bands that best 
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contribute to the delimitation of the classes in the feature space 

so that the importance of each attribute generated by the RF 

algorithm can be used. Another possibility for future work is to 

use deep NN in this dataset, since it can improve the results 

because of its capacity for engineering new features. The results 

presented in this paper can be used as a baseline for future 

research in hyperspectral image classification on HyRANK 

dataset. 
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