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ABSTRACT: 

Vegetation includes a significant class of terrestrial ecosystem. Information on tree species categorization is important for 

environmentalists, foresters, agriculturist, urban managers, landscape architects and biodiversity conservationist. The traditional 

methods of measuring and identifying tree species (i.e., through field-based survey) are time taking, laborious and costly. Remote 

sensing data provides an opportunity to identify and classify vegetation species over a large spatial extent. Hyperspectral remote 

sensing can detect the sublet spectral details among species classes and thus make it possible to differentiate vegetation species based 

on these subtle variations.  This research examines the thermal infrared (2.5 to 14.0 µm) hyperspectral emissivity spectra (comprised 

of 3456 spectral bands) for the classification of thirteen different plant species. The use of thermal infrared hyperspectral emissivity 

spectra for the identification of vegetation species is very rare. Three different machine learning methods including support vector 

machine (SVM), artificial neural network (ANN) and convolutional neural network (CNN) are used to classify thirteen vegetation 

species and their performance is assessed based on their overall accuracy. The accuracy obtained by CNN, ANN and SVM is 99%, 

94% and 91%, respectively. Each classifier was also tested for the advantage associated with increase in training samples or object 

segmentation size. Increase in the training samples improved the performance of SVM. In a nutshell, all comparative machine learning 

methods provide very high classification accuracy and CNN outperformed the comparative methods. This study concludes that thermal 

infrared hyperspectral emissivity data has the potential to discern vegetation species using state of the art machine learning and deep 

learning methods.  

1. INTRODUCTION

1.1 Background 

Identifying tree species through statistical classification is an 

essential step to manage, store, and guard forestry resources. 

Thorough and precise forestry maps are vital for the prevention 

and sensing of fire, water scarcity and a variety of other forest 

disorders triggered by change of climate. Satellite images 

comprise pixels showing different ground objects with 

identifiable brightness values, letting the statistical classification 

of objects like vegetation and shrubs, due to their spectral signs. 

Classification of forestry has extended from more general 

classifications (like classifying deciduous and coniferous trees) 

to more deeper classifications (like species within a tree type). 

Usually, the capability to distinguish species is inadequate, 

because of low spectral differences, which aids in distinguishing 

the minor spectral variations among species. [1]. 

Imagery type is a key feature in classification because the 

spectral and spatial resolutions can affect the classification 

accuracy. Three to around eight image stacks of multispectral 

bands are usually utilized for distinguishing land covers or forest 

cover (broadleaf, conifer) classification. Hyperspectral stack of 

data comprises many (usually around 64 to 256) successive 

thinner bands, giving more details that permits the classification 

of small spectral differences among forest covers. Even with 

more quantity of information present in hyperspectral imagery, 

discerning the identical genus species might be tough, often 

reducing the classification accuracy. Still, Clark et al. observes 

that the use of hyperspectral data essentially performs better than 

the use of multispectral data.  
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Many high-level features in raw data are captured by the 

Convolutional Neural Networks (CNN) right away. This study 

provides machine learning approach for identifying certain 

vegetation species using hyperspectral data in the thermal 

infrared band. Utilizing the modern AI based methods like CNN 

to statistically classify vegetation has improved the overall 

accuracy. Statistical classification is being used in numerous 

applications that includes a choice mechanism to allocate 

observations to a set of ground cover types. [3] The data-

intensive hyperspectral stack of images enhances the 

classification accuracy by giving better spectral resolution to 

distinguish the land cover types spanning one band in a 

multispectral dataset. Hence, the hyperspectral imagery is 

widely employed for discerning the tree species [4].  

1.2 Significance of Vegetation Classification in a Forest 

Familiarity with the vegetation state of a forest cover is 

significant for both management of protected parts (Nagendra et 

al., 2013) and approximating the worth of forestry (Ashutosh, 

2012). Centralized monitoring necessitates multidimensional 

approach and accuracy in extracting forest statistics. The forest 

ecosystem cover information is a basic and significant 

constituent (Shen, Sakai, Hoshino, 2010). (Jadczyk, 2009) 

studies the areas threatened by human intrusions in Karkonosze 

Mountains, Poland. A section of the Karkonosze National Park 

forms part of the valuable Karkonosze Mountains ecosystem. 

Industrial expansion surrounded the mountains around 30 years 

ago, due to which drought, pollution, and acid rains occurred and 

the ecosystem of the area was damaged. The lack of foresight 

leading to the unplanned decisions caused the ecosystem’s 

disturbance (Raj, 2014). Therefore, exhaustive vegetation 

information extraction is important for the management of 
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national parks as well as forests. Before the damage occurred, 

the low-resolution Landsat satellite images were only available 

(Bochenek, Ciołkosz, & Iracka, 1997; Jarocińska et al., 2014). 

The advent of hyperspectral sensing using, for example, the 

Airborne Prism Experiment (APEX), an in-depth vegetation 

study can be conducted (Jarocińska et al., 2016; Peerbhay, 

Mutanga, & Ismail,2013, Masaitis & Mozgeris, 2013; 

Thenkabail, Lyon, & Huete, 2012).  

 

2. MATERIALS AND METHODS 

2.1 Leaf sampling 

The data were used in this research study in Enschede, 

Netherlands, between July and September 2010. Leaves were 

mixed to a total of thirteen plant species (Table 1), eleven of 

which were local and two were tropical (Asplenium nidus and 

Spathiphyllum, local nursery The species was identified by an 

expert taxonomist. In order to sample the positional variation, 

the leaves were collected from the lower, middle and upper part 

of the tree, both on the sun and the shaded side. to the laboratory 

within 5 minutes, and placed in moist cotton to avoid 

desiccation. Spectral measurements were recorded as soon as 

possible. 

 

 

Table 1. Thirteen Plant Species Common Name, Code, And 

the Number of Leaves Per Species Measured Using A 

Laboratory Spectroradiometer (2.5 Μm-14 Μm). 

 

2.2 Leaf spectral measurement 

The Directional Hemispherical Reflectance (DHR) spectrum is 

a spectrometer of Bruker VERTEX 70 FTIR (Fourier transform 

infrared, Bruker Optics GmbH, Ettlingen, Germany). The 

spectrometer was continuously purged with water vapor and 

carbon dioxide using nitrogen (N2) gas. The measured leaves 

were collected from at least 10 different plants, with high 

reflectance (about 0.96). The DHR spectra of the plant were 

measured between 2.5 and 14 μm, with a spectral resolution of 4 

cm. Leaf sample was placed on a black surface to absorb 

transmitted radiation through the leaf and to minimize 

transparency in the 3.5 and 5.7 μm range, as suggested by Gerber 

et al. 2011. Each leaf spectrum was derived from the averaging 

of 1000 scans. The spectral region was 6-8 μm was excluded 

from the analysis because the spectra were noisy in the region. 

The applicability of. The Kirchhoff's law is based on a black 

surface. 

 

2.3.1 Support Vector Machine (SVM)  

Support vector machine (SVM) is a supervised classifier, it has 

been proposed by Vapnik. This classifier has been introduced to 

solve two-class pattern recognition problems using the Structural 

Risk Minimization principle. Given a training set in a vector 

space, this method finds. The best decision hyper-plane that 

separates a set of positive examples from a set of negative 

examples with maximum margin. 

A. Optimal hyper-plane in the linear separable case 

Considering the training data (𝑥𝑖 , 𝑦𝑖), for all 1 ≤  𝑖 ≤  𝑛, 𝑦𝑖 ∈
{−1, 1}, 𝑥𝑖 ∈ ℝ𝑑. The points 𝑥 which belongs to the hyperplane 

satisfy (𝑤 ⋅  𝑥)  +  𝑏 =  0, where 𝑤 is normal to the hyperplane, 
𝑏

‖𝑤‖
 is the perpendicular distance from the hyperplane to the 

origin, and ‖𝑤‖ is the Euclidean norm of 𝑤 (Fig.1). Define the 

decision function[42]. 

 
Figure 1: A Linear SVM Two-Dimensional Space 

𝑓(𝑥) ∶=  sign ((𝑤 ⋅  𝑥) +  𝑏). (3) 

For the linearly separable case, the support vector algorithm 

simply looks for the separating hyperplane with largest margin. 

This can be formulated as follows: Suppose that all the training 

data satisfy the following constraint. 

𝑤. 𝑥𝑖 + 𝑏 ≥ +1         for  𝑦𝑖 = 1;                                       (1)                                                                             

𝑤. 𝑥𝑖 + 𝑏 ≤ +1        for  𝑦𝑖 = −1.                                    (2)                                                                             

These can be combined into one set of inequalities: 

𝑦(𝑤. 𝑥𝑖 + 𝑏) ≥ +1                                                                   (3)                                                                                                           

The optimal hyperplane is the hyperplane that maximizes the 

margin between the samples and the separating hyper-plane 

which is equal to 2/||w||. 

Lagrange multipliers; in this case, the decision function is 

defined by: 

𝑓(𝑥) = sign( ∑ 𝑎𝑖𝑦𝑖(𝑥, 𝑥𝑖) + 𝑏 𝑛
𝑖=1 )                                   (4)                                                                               

by satisfying This problem can be solved by the use of their 

conditions: 

𝑎𝑖[𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) − 1] = 0       ∀ 𝑖 = 1 … 𝑛, 𝑎𝑖 ≠ 0.                (5)    

                                                        

B. Optimal hyper-plane in the nonlinear separable case 

To handle nonlinearly separable classes, a nonlinear 

transformation ϕ is used to map the original data points into a 

higher dimensional space, in which the data points are linearly 

separable, called re-description space Figure 2. 

 

# Species Name Common Name Code Sample 

size 

1 Acer 

platanoides 

Norway maple AP 35 

2 Asplenium 

nidus 

Hawai'I birdnest 

fern 

AN 35 

3 Cornus sericea Redosier 

dogwood 

CS 35 

4 Fallopia 

japonica 

Japanese 

knotweed 

FJ 35 

5 Ginkgo biloba Maidenhair tree GB 35 

6 Hedera helix English ivy HH 35 

7 Ilex opaca Ilex IL 35 

8 Liquidambar 

styraciflua 

Sweetgum LS 35 

9 Platanus 

orientalis 

Oriental 

planetree 

PO 35 

10 Prunus 

laurocerasus 

Cherry laurel PL 35 

11 Rhododendron 

caucasicum 

Rhododendron  RH 35 

12 Spathiphyllum 

cochlearispath

um 

Peace Lily SP 35 

13 Tilia 

platyphyllos 

Largeleaf linden TP

  

35 
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Figure 2: Linear Discrimination in Re-Description Space 

In this case, the equation of the separator hyperplane is ℎ(𝑥) =
 𝑤 𝜑(𝑥)  +  𝑏 and the decision function is defined by: 

𝑓(𝑥) = sign(∑ 𝑎𝑖𝑦𝑖〈𝜑(𝐱) 𝜑(𝐱𝑖)〉 + 𝑏),
𝑛

𝑖=1
                            (6)                                                                       

The determination of 〈𝜑(𝐱𝑖) 𝜑(𝐱𝑗)〉 is computationally 

expensive and sometimes impossible to calculate. To solve this 

problem, several kernel functions have been used, which we can 

cite as 

• Linear kernel: 

𝐾 (𝑥, 𝑥𝑖)  =  𝑥𝑡  ∗  𝑥𝑖 .                                               (9)                                                                                                                     

• Polynomial kernel: for degree 𝑑 polynomials, the 

polynomial kernel is: 

            𝐾 (𝑥, 𝑥𝑖)  =  (𝑥𝑡  ∗  𝑥𝑖 +  𝑏)𝑑 ,    𝑏 > 0.                     (10)                                                                                               

• Radial Basis Function kernel (RBF): 

𝐾 (𝑥, 𝑥𝑖) = exp (
|𝑥− 𝑥𝑖|2

2𝜎2
) ,   𝜎 ≠ 0.                                            (11)                                                                          

 

SVMs have shown a good performance for classifying high 

dimensional data when a limited number of training samples are 

available. Thus, they have been used for the classification of 

hyperspectral images. Indeed, many classification approaches 

have been proposed. In authors developed spectral-spatial 

classification techniques capable to consider spatial 

dependences between pixels. It is illustrated with two different 

classifiers: multinomial logistic advanced spectral-spatial 

classification techniques. In the first step, a probabilistic SVM 

pixel-wise classification of the hyperspectral image has been 

applied. In the second step, spatial contextual information has 

been used for refining the classification results obtained in the 

first step. This is achieved by means of the MRF regularization. 

Experimental results prove that the proposed techniques yield 

good classification accuracies. In authors developed a new 

spatio-spectral classification method[1]. The parameter C 

specifies the allowable classification of non-separable training 

data, allowing training rigidity to be remote sensing. The gamma 

parameter is a kernel display parameter that specifies the 

smoothing of the extra plane shape that divides the class. 

 

 

2.3.2 Artificial Neural Network 

Artificial Neural Networks (ANN) is a nonlinear model 

that is similar to a human neural system. Each ANN is a 

series of nodes and weighted connections between them 

(Carvajal et al., 2006). One of the privileges or ANN 

method in comparison with comparison Traditional 

statistical methods The training and recalling are 

dependent on the linear relationship between data patterns 

and independent input data (Jayas and Paliwal et al., 2006, 

Civco and Waug, 1994). However, the reasons for the 

success of the ANN in the classification Can be 

Summarize as: there is no need for pre-assumption in data 

distribution, it allows the user to use initial knowledge 

about classes and possible limits . the method allows the 

management of the spatial data from Multiple sources and 

can achieve their classification wheat. Results equally 

(Carvajal et al., 2006). are assigned Out of 826 detected 

pixels in the previous stage, 124 were used as training data 

and the rest were left for algorithm evaluation. He 

classification algorithm was run once for each of the three 

species (barley, alfalfa, and wheat). At the end, the output 

images were composed in an RGB image. 
. 

2.3.3 Convolutional Neural Network (CNN) 

Deep learning is a very effective method for learning optimum 

features from large amount of training datasets automatically. 

Trend towards deep learning in computer vision applications is 

increasing tremendously because modern deep learning methods 

are more accurate than humans in classifying images. 

Furthermore, the use of Graphical Processing Units (GPUs) have 

decreased the training time of deep learning methods. Large 

databases of labelled data and pre-trained networks are now 

publicly available.  

   

 

 

 

Figure 4: Convolutional neural networks model. 

Three crucial characteristics make the convolutional neural 

networks different from other neural networks. Generally, these 

three characteristics are all aiming at dimensionality reduction to 

reduce calculation time. The first characteristic is sparse 

connectivity, which means that there are only local connections 

between neurons of adjacent layers. In other words, the inputs of 

hidden units in layer m are from a subset of units in layer m-1, 

units that have spatially contiguous receptive fields. The sparse 

connectivity can be illustrated in figure 5. However, in the 

traditional neural network structure, every neuron in layer n 

connects with all the neurons in layer m-1. Therefore, by sparse 

connectivity, parameters for neurons in layer m decrease a lot. 

The theory for supporting sparse connectivity is that local pixels 

have strong correlations while long-distance pixels have weak 

correlations.   

 
Figure 5: Sparse Connectivity 

The second characteristic is shared weights. In neural networks, 

neurons in layer m-1 are the variables or inputs to neurons in 

layer m. And neurons in layer m can be seen as outputs. Every 

input has a weight to determine the output. As show in figure 6, 

each neuron in layer n shares the same weights and bias. All 

neurons in the same layer form a feature map. It reduces the 

number of parameters for the network. 

Figure 3:Traditional image recognition methods model 
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Figure 6: Shared weights Colour identifies the weight 

The last characteristic is pooling, which is a form of down 

sampling. Pooling means aggregate features in a rectangle 

neighborhood into one feature, as show in figure 7. The figure 

on the left in figure 11 is a feature map, pooling reduces the 

dimension and avoids overfitting. 

 

 
 

Figure 7: Pooling 

Krizhevsky et al. achieved excellent recognition rates on Large 

Scale Visual Recognition Challenge dataset using standard 

backpropagation for training a deep CNN. 

 

3. RESULT AND DISCUSSION 

3.1 Support Vector Machine Line Kernel Classifier (SVM-

Line Kernel): 

One of the main results of Statistical Learning Theory is that the 

error probability of a classifier is upper bounded by a quantity 

depending not only on the error rate achieved on the training set, 

but also on an intrinsic property of the classifier, which is a 

measure of the “richness” of the set of decision functions it can 

implement (Roliand Fumera, 2000) . In the two-class case, a 

support vector classifier attempts to locate a hyper plane that 

maximizes the distance from the members of each class to the 

optimal hyper plane figure 5. Assume that the training data with 

k number of samples is represented by where X is an n-

dimensional vector and Y ∈ {-1, +1} is the class label. These 

training patterns are said to be linearly separable if a vector w 

(which determines the orientation of a discriminating plane) and 

a scalar b (determines offset of the discriminating plane from 

origin) can be defined so that inequalities (12) and (13) are 

satisfied. 

W.Xi+b≥+1         for Yi=1                                                    (12)                                                                                                       

W.Xi+b≥+1        for Yi=-1                                                     (13)                                                                                                             

Y(W.Xi+b)≥+1                                                                     (14)                                                                                                                                                                                                                                                 

 

The aim is to find a hyper plane which divides the data so that 

that all the points with the same label lie on the same side of the 

hyper plane. This amounts to finding w and b so that This results 

in a quadratic optimization problem which is solved by a 

standard numerical optimization package. The minimization 

procedure uses Lagrange multipliers and Quadratic 

Programming (QP) optimization methods. If λi, i = 1,….,k are 

the non-negative Lagrange multipliers associated with constraint 

(7), The training vectors x are solely used in inner products 

which can be replaced by a kernel function K (x, y) that obeys 

Mercer’s condition. This is equivalent to mapping the feature 

vectors into a high-dimensional feature space before using a 

hyper plane classifier there. The use of kernels makes it possible 

to map the data implicitly into a feature space and to train a linear 

machine in such a space, potentially side-stepping the 

computational problems inherent in evaluating the feature map 

(Cristianni and Shawe-Taylor, 2000). In this research, three 

kinds of kernels are studied. These kernels are mathematically 

defined as below (Chang and Lin, 2003). 

           
Figure 8: SVM classification with a hyper plane that  

maximizes the separating margin between the two classes 

(indicated by data points marked by "x"s and "O"s). 

Support vectors are elements of the training set that lie on 

the boundary hyper planes of t. 

It is possible to rescale w and b so that  

y(w.x + b) ≥1                                                                           (15)                                                                                                               

and minimizing 1 w under these constraints. This concept can  

be extended to the case when the classes are not linearly 

separable, i.e. when (3) has no solution. A slack variable, I ξ i 

=1,……, k can be introduced such that can be written as while 

the objective function is supplemented to keep the constraint 

violation as small as possible: 

 

3.1.1 Kernel selection 

Three kernels were studied and the results summarized in Table 

1. The Polynomial kernel (Equation 10) of degree 3 (d=3) and 

cost (C=1000) showed the best accuracy on test data. C refers to 

the cost or error penalty. A high value of error penalty will force 

the SVM training to avoid classification errors. A large value of 

C will result in a larger search space for the QP optimizer. 

However, some experiments fail to converge for C > 1000. In 

the kernels under study, a value of C=1000 was optimum. For 

the RBF kernel (Equation 11) gamma (radius) was set to 1. This 

gives the area of influence the particular support vector has over 

the data space. The RBF  

kernel was experimented with different values of nu. Nu-SVC is 

the same as C-SVC except that the range of nu is always between 

[0, 1] while C is from zero to infinity. Nu is related to the ratio 

of support vectors and the ratio of the training error. Three SVM 

models have been used for further study: The degree 3 

polynomial kernel, RBF kernel with nu=0.01 and the linear 

kernel (Equation 11); the cost for all the kernels set to 1000. 

Table 2 shows that the linear kernel highest accuracy of 91% 

while RBF (nu=0.1)  is 87% and poly kernel is 84%. 

 

3.2 Evaluation of signatures 

Confusion matrices: The confusion matrices for the four 

classifiers with User Accuracy and Producer Accuracy are as 

shown in Tables 3-6. These matrices help evaluate the classifiers 

based on their performance on a class-by-class basis. For 
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example, they show the number of AP species misclassified as 

LS, AN etc, and also give the count of other classes misclassified 

as AP. This leads us to find the Users and Producers Accuracy. 

Users accuracy calculates correctly classed from the trace 

variable over the row total and provides and indication of errors 

of case omission. Producers accuracy is the calculation of 

correctly classed from the trace value over the column total. 

(Congalton,1991). Producers’ accuracy gives an indication of 

the accuracy of what the model was able to itself predict, 

whereas User accuracy relates how well the training data was 

discerned. A look at these matrices suggests that AP and LS 

have confusing signatures and so do ilex and LN. Clearly, the 

CNN outperformed the SVM classifier in terms of testing 

accuracy. 

 

3.3 Discussion 

In comparing the overall correctacies of the CNN and SVM 

classifier, CNN was determined to have a static-significant 

advantage over SVM when the pixel-based reflectance samples 

used, without the segmentation size. The most misclassified 

class for both classifiers was Fallopia japonica, with class 

correctacies all above 70%. The Fallopia japonica class was 

misclassified as multiple different species and had fewest 

number of training samples and consistently low class 

correctacies. Acer platanoides were properly recognized most 

consistently. A noticeable trait of both classifiers was the highest 

overall correctacies despite abundant misclassifications found 

during visual inspection. Duro et al. Experienced similar issues 

with their classification, highlighting that limited test samples 

can result in incorrect classification accuracies in the same way, 

Congalton explains that a large quantity of zeroes within the 

confusion matrix could mean that the test sample size is 

inadequate or classification very successful. Considering the 

number of zeroes on the confusion matrix for the small classes, 

it is quite possible that insufficient test samples are responsible 

for some species of high classification correctacies. For this 

research, the stratified sampling method utilizes single species to 

ensure that the correct sample identification; However, this 

prevented test samples are being selected near standing 

boundaries, in mixed forest areas or inaccessible areas. As a 

result, the test samples did not represent all the areas of the study 

site, and thus, the accuracy assessment failed to reflect those 

performance in classifier. In some cases, an individual species 

was misclassified as one or two other classes, as shown by the 

Acer platanoides class generally being incorrectly classified as 

bay or Douglas fir. 

 

As a matter of fact, it's a common tree type (conifers and 

broadleaf). Some of the broadleaf tree classes were 

misclassified. The fact that Douglas has been misclassified as to 

whether there are any misclassifications. Leckie et al. 

highlighting Shadowing may well explain the misclassification 

of Douglas fir as coast live throughout the upper portions of the 

mosaic. Also, it can be used to create a new window. Although 

a normalization was a normalization, the normalization was 

unlikely. Because of the results of all classes This may have 

caused spectral overlap. 

 

The effect of pixel-based training samples played a significant 

role in SVM and CNN classifications. The difference between 

object and pixel-based training samples can be seen as an 

increase in sample size. Although the actual number of samples 

are both the sample types for the same, pixel-based reflectance 

samples provide additional spectral reflectance values to 

classifiers trained. 

 

The current literature generally acknowledges the support of the 

machine classifier for its ability to work well with limited 

training samples. SVM only uses the subset of training samples 

that uses the location of SVM hyperplane. SVM classifier. In the 

same way, Zhang and Xie found SVM and CNN both trained 

with a sensitive size and a high spatial and spectral variable. This 

study may be complexity and heterogeneity of forest and 

insufficient object-based samples. Considering the effect of 

training samples on SVM hyperplanes, eliminating object-based 

samples (based on the mean values of the pixel) may not be able 

to capture high spectral variations within thirteen tree species in 

a highly heterogeneous forest as compared to a less complex 

forest with less classes or less spectral overlap species. 
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 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 32 0 0 0 0 0 0 0 0 1 0 0 0 33 96 

An 0 30 0 2 2 0 0 1 0 0 0 0 0 35 85 

Cs 0 0 28 0 0 0 0 0 1 0 0 1 0 30 93 

Fj 0 0 0 30 0 0 4 0 0 0 1 0 0 35 85 

Gb 0 0 0 1 29 0 0 0 0 0 2 0 0 32 90 

Hh 0 0 0 0 0 32 0 1 0 2 0 0 0 35 91 

Il 0 0 0 0 2 0 30 0 0 0 0 0 0 32 93 

Ls 1 0 0 0 0 0 0 32 0 0 0 0 0 33 96 

Po 0 0 1 0 0 0 0 0 29 0 1 2 0 32 90 

Pl 1 1 0 0 0 0 0 0 0 33 0 0 0 35 94 

Rh 0 0 0 0 0 0 1 0 0 0 31 1 0 33 93 

Sp 0 0 0 0 0 1 0 0 0 0 0 32 0 33 96 

Tp 0 0 0 0 0 0 0 2 0 0 4 1 28 35 80 

Total 34 31 29 33 33 33 35 34 30 38 39 37 28 433  

PA 94 96 96 90 87 96 85 94 96 86 79 86 100 OA=91% 

Table 2: Confusion Matrix of Support Vector Machine Used Line Kernel Classifier (SVM-Line Kernel) 

 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total  UA 

Ap 31 0 1 0 0 1 0 0 0 2 0 0 0 35 88 

An 1 27 0 0 0 0 1 1 0 0 1 0 0 31 87 

Cs 0 0 28 0 0 0 1 0 2 0 1 0 0 32 87 

Fj 1 0 1 26 2 2 0 0 2 1 0 0 0 35 74 

Gb 0 0 0 1 20 0 0 0 0 0 0 2 0 23 86 

Hh 0 1 0 0 0 26 0 0 0 1 0 0 0 28 92 

Il 0 0 0 0 0 0 31 0 0 0 0 0 0 31 100 

Ls 0 0 0 0 0 0 0 30 1 0 1 1 0 33 90 

Po 1 0 0 1 2 0 0 0 29 0 0 1 0 34 85 

Pl 0 0 1 0 0 0 0 0 0 28 0 0 0 29 96 

Rh 0 0 0 1 0 1 0 0 0 0 31 0 0 33 93 

Sp 0 4 0 0 1 0 0 4 0 2 0 12 0 23 52 

Tp 0 0 2 0 0 0 0 0 0 0 1 0 31 33 93 

Total 34 32 33 29 25 30 33 35 34 34 35 16 31 399  

PA 91 84 84 89 80 86 93 88 85 82 88 75 31 OA=87% 

Table 2: Confusion Matrix of Support Vector Machine Used Redial Base Function Classifier (SVM-RBF Kernel) 

 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 35 0 0 0 0 0 0 0 0 0 0 0 0 35 100 

An 0 29 0 2 0 0 0 2 0 2 0 0 0 35 82 

Cs 0 0 30 0 1 0 0 0 2 0 0 1 0 34 88 

Fj 0 0 0 25 0 0 1 0 4 2 2 0 0 34 73 

Gb 0 0 0 0 28 1 0 1 0 1 0 1 0 32 87 

Hh 0 0 1 0 0 27 0 0 0 0 4 0 0 32 84 

Il 0 0 0 0 0 0 21 0 0 4 0 2 0 27 77 

Ls 0 0 1 0 0 0 0 30 0 0 2 1 0 34 88 

Po 1 1 0 0 1 0 0 0 27 2 0 1 0 33 81 

Pl 0 0 0 1 0 1 2 0 0 26 0 2 0 32 81 

Rh 0 0 0 2 0 1 1 0 1 0 30 0 0 35 85 

Sp 0 0 0 0 2 0 1 0 0 1 0 31 0 35 88 

Tp 0 0 0 4 0 2 0 0 2 2 0 0 24 34 70 

Total 36 30 32 34 32 32 26 33 36 38 38 39 24 432  

PA 97 96 93 73 87 84 80 90 75 68 78 79 100 OA=84% 

Table 3: Confusion Matrix of Support Vector Machine used Poly Kernel Classifier (SVM-Poly kernel) 
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 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 10 0 0 0 0 0 0 0 0 0 0 0 0 10 100 

An 0 12 1 0 0 0 0 0 0 0 0 0 0 13 92 

Cs 0 0 4 0 0 0 0 0 0 0 0 0 0 4 100 

Fj 0 0 0 3 0 0 1 0 0 0 2 0 0 4 75 

Gb 0 0 0 0 2 0 0 0 0 0 0 0 0 2 100 

Hh 0 0 
 

0 0 6 0 0 0 0 4 0 0 6 100 

Il 0 0 0 0 0 0 2 0 0 0 0 0 0 2 100 

Ls 0 0 1 0 0 0 0 9 0 0 2 0 0 10 90 

Po 0 0 0 0 0 0 0 0 8 0 0 0 0 8 100 

Pl 0 0 0 0 0 0 0 0 0 5 0 0 0 5 100 

Rh 0 0 0 0 0 0 0 0 1 0 6 0 0 6 100 

Sp 0 0 0 0 2 0 0 0 0 0 0 15 0 17 88 

Tp 0 0 0 0 0 0 0 0 0 0 0 0 6 6 100 

Total 10 12 5 3 2 6 3 9 9 5 6 15 8 93  

PA 100 100 80 100 100 100 66 100 88 100 100 100 75 OA=94% 

Table 4:Confusion Matrix of Artificial Neural Network 

 

 

 
Figure 9: CNN Training Accuracy plot 

 Ap An  Cs  Fj Gb Hh Il Ls Po Pl Rh Sp Tp Total UA 

Ap 33 0 0 0 0 1 0 0 0 0 0 0 0 33 97 

An 0 35 0 0 0 0 0 0 0 0 0 0 0 35 100 

Cs 0 0 34 0 0 0 0 0 0 0 0 0 0 34 100 

Fj 0 0 0 32 0 0 1 0 0 0 0 0 0 33 96 

Gb 0 0 0 0 34 0 0 0 0 0 0 0 0 34 100 

Hh 0 0 1 0 0 33 0 0 0 0 0 0 0 34 97 

Il 1 0 0 0 0 0 30 0 0 0 0 0 0 31 96 

Ls 0 0 0 1 0 0 0 34 0 0 0 0 0 35 97 

Po 0 0 0 0 0 0 0 0 30 0 0 0 0 30 100 

Pl 0 0 0 0 0 0 0 0 0 29 0 0 0 29 100 

Rh 1 0 0 0 0 0 0 0 0 0 34 0 0 35 97 

Sp 0 0 0 0 0 0 0 0 0 0 0 29 0 29 100 

Tp 0 0 0 0 0 0 0 0 0 0 0 0 34 34 100 

Total 35 35 35 33 34 34 31 34 30 29 34 29 34 426  

PA 94 100 97 96 100 97 96 100 100 100 100 100 100 OA=99% 

Table 5: Convolutional Neural Network Classifier (CNN) 

 

4. CONCLUSION 

This study compares the classification accuracy of convolution 

neural network artificial neural network and support vector 

machine on thirteen forest-vegetation specie. SVM classifier is 

experimented with linear, RBF and polynomial kernels. CNN 

has higher overall accuracy as compared to the three SVM types.  

And artificial neural network. We can conclude this things CNN 

is better then conventional morphological methods for feature 

extraction in plant species. 

The data taken from Bruker VERTEX 70 FTIR spectrometer 

(Bruker Optics GmbH, Ettlingen, Germany) was used to acquire 

the Directional Hemispherical Reflectance (DHR) spectrum of 

each leaf. Experimental results indicate that CNN based 

approach is significantly effective with an overall accuracy of 

about 99%. Upon increasing the training data, the classification 

accuracy of both SVM and CNN improves. However, the size of 
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objects in the object-based classification has no significant 

impact on both classifiers’ performance. 

Due to the statistically significant classification of thirteen 

vegetation species, further depth in the study would give more 

insights. The deep learning classification and pre-processing 

methods will be further explored to enhance the classification 

performance. 
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