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ABSTRACT:

The objective of this work was the comparison of two different classification approaches to detect four different tree species of a
highly diverse tropical Atlantic Forest area. In order to achieve the objective, images were acquired with the Rikola hyperspectral
camera onboard the UX4 UAV. The study area is in the Western part of Sdo Paulo State, a tropical Atlantic Forest area protected by
governmental laws, which contains areas already deforested in the past and which are currently in regeneration. The tested
approaches were one based only in the pixel values and other one based in regions. After the image acquisition, the images were
radiometrically and geometrically processed. In addition, an airborne laser scanning point cloud was used to calculate the canopy
height model of the area, which was used to detect the individual tree crowns with the superpixels method. Those superpixels were
used to the region-based classification and to feature extraction. A total of 28 features were extracted where 25 correspond to the
spectral bands acquired with the Rikola camera and three correspond to the three first principal components of the images. The
features were extracted from the 91 samples recognized during a field work. From the total of samples, 19 were separated to validate
the classification results. The chosen classifier was the Random Forests and the results presented a kappa coefficient of 18.20% and

36.57% for the pixel-based and region-based classifications showing that the second one had a better performance.

1. INTRODUCTION

Tree species recognition topic has been increased in the last
years due to the forest importance and the development of
different sensors and platforms to acquired Remote Sensing
data (Fassnacht et al. 2016; Maschler, Atzberger, Immitzer,
2018). Knowledge of the tree species location can contribute to
the sustainable management of forests, which has environmental
and economic importance (Matsuki, Yokoya and lwakasaki,
2015). Forests are not only habitat of thousands of different
species, they play an important role in the carbon and water
cycle and moreover, provide feedstock resources (Paneque-
Gélvez et al., 2014; Romijn et al., 2015). In addition, mapping
tree species allied with structural information can be a useful
data to know the forest composition, with data about dominant
species, biomass and successional stage of forest recovering.

Regarding the tree species mapping for forest inventories, they
can be done using two mainly approaches: using data acquired
in field or using remotely sensed data. The first one is not
suitable, especially when the trees information are required over
larger areas and the monitoring needs to repetitive (Immitzer,
Atzberger, Koukal, 2012). Currently, with the miniaturized
sensors and Unmanned Aerial Vehicles (UAVs) remotely
information can be cheaper and faster acquired in comparison
with the use of aircrafts or satellites especially if a higher
temporal resolution is required. The use of UAVs can provide
images with very high spatial resolution (VHSR), i.e.,
centimetres. When hyperspectral sensor is on-board of those
platforms, besides the VHSR information, the spectral
information can be acquired in a more detailed way, in dozens
of spectral bands, sufficient to reconstruct the spectral signature

of targets and being possible to show spectral differences not
detected by multispectral data.

Classification approaches, among features and classifiers, are
also important to tree species mapping in order to achieve better
results. Nevalainen et al. (2017) applied five different classifiers
in a region-based approach to identify four tree species in boreal
forest in Finland. Different structural and spectral set of features
were extract in a circular area around each tree centre to the
classification. The best result was achieved with the Random
Forests (RF) and Multilayer Perceptron classifiers, around 95%
of overall accuracy each.

Using the support vector machine (SVM) classifier,
hyperspectral images and airborne laser scanner (ALS) data,
Dalponte et al. (2014) classified three tree species of boreal
forest from Norway. The authors verified different accuracies
when using manual and automatically individual tree crowns
(ITCs) where the best results were achieved with the manual
ITCs. Another find of the authors were related with the
selection of the training samples, being the spectral feature more
influential than the information of the canopy height model
(CHM).

Immitzer, Atzberger and Koukal (2012) compared pixel-based
and object-based approaches of four tree species classification
in temperate forest in Austria. The authors used WorldView-2
satellite images and the RF classifier concluding that the object-
based approach had a better performance than the pixel-based
approach. Moreover, Ferreira et al. (2016) compared three
different classifiers in hyperspectral and multispectral data from
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Brazilian tropical Atlantic Forest using a pixel-based approach.
They also tested an object-oriented approach to the
classification, achieving different accuracies. The best results
were for the linear discriminant analysis, 90.10% of average
accuracy, in the object-oriented approach.

It is worth noting, the importance of forest studies regarding the
tree species classification. It is worth noting, the importance of
forest studies regarding the tree species classification.
Nonetheless, not only different approaches to identify tree
species need to be studied, but need to be applied in different
type of forests such as the Brazilian tropical Forests, which is
still few studied according to Fassnacht et al. (2016). In this
sense, the objective of this work is to test two different
approaches to tree species classification of Brazilian Atlantic
Forest, the pixel-based and region-based classifications one.

1.1 Study area

The study area is a Brazilian tropical Atlantic Forest fragment
located in the Western part of S&o Paulo State, in Euclides da
Cunha Paulista. It is a fragment protected by governmental law
inside the Black-Lion Tamarin ecological station (ESEC-MLP).
ESEC-MLP is composed by four different fragments, Santa
Maria, Tucano, Agua Sumida and Ponte Branca. The study area
is inside Ponte Branca and has approximately 500 m by 130 m
in length and width, respectively. Is a transitional area in terms
of successional stages. The border of the area, which is closest
to the road has smaller trees with an average height of 7.5 m.
The area further away from the road comprises trees up to
approximately 20 m of height. According to data collected
during field works conducted between 2015 and 2017, it was
verified that the area comprises more than 20 different tree
species with diameter at breast height bigger than 3.8 cm
(Berveglieri et al., 2016; Miyoshi et al., 2018). Figure 1 shows
images taken outside and inside the study area, presenting the
heterogeneity of the area.

Figure 1. Images of the study area. a) Outside the area; b) c)
Inside the area

2. METHODOLOGY

The data processing included the following steps: i) Image
acquisition; ii) Image processing (dark current and radiometric
corrections as well as geometric processing and radiometric
block adjustment); iii) Individual tree crown detection; iv)
Features extraction; v) Tree species classification and
evaluation.

2.1 Image acquisition

Using the UAV named UX4 developed by Nuvem UAV
(http://nuvemuav.com/)  specially to carry the Rikola
hyperspectral camera, images were acquired in July 1% of 2017.
UX4 is a quadcopter controlled by PixHawk autopilot and able
to fly until 30 min depending on weather, battery and payload
conditions. Besides the Rikola camera, the payload is composed
by a global navigation satellite system (GNSS) to record the
position of the UAV and one RGB camera (GoPro Hero 4
Black). Figure 2 shows the UX4 UAV during a field campaign
with the Rikola camera attached. The flight mission was
realized from 10h14 to 10h24, local time (UTC-3) with the
UAV speed of 4 m/s, providing images with forward overlap
higher than 70%.

l—' GNSS recetver

Rikola camera

GoPro camera 2 " I
Figure 2. UX4 UAV and its payload

Rikola camera is a hyperspectral frame camera based on the
Fabry-Pérot Interferometer (FPI). It can acquire different set of
spectral bands, due to the FPI, in the two CMOS sensors. It has
an approximated focal length of 8.7 mm and the frame format
sensors are sized of 1017 x 648 pixels with a pixel size of 5.5
pm (Rikola, 2015; Miyoshi et al., 2018). 25 spectral bands
distributed in the range between 500 nm and 900 nm were
acquired as shown in Table 1.

Central wavelengths of each spectral band (hm): 506.22, 519.94,
535.09, 550.39, 565.10, 580.16, 591.90, 609.00, 620.22, 628.73,
650.96, 659.72, 669.75, 679.84, 690.28, 700.28, 710.06, 720.17,
729.57, 740.42, 750.16, 769.89, 780.49, 790.30, 819.66

FWHM (nm): 12.44, 17.38, 16.84, 16.53, 17.26, 15.95, 16.61,
15.08, 16.26, 15.30, 14.44, 16.83, 19.80, 20.45, 18.87, 18.94, 19.70,
19.31, 19.01, 17.98, 17.97, 18.72, 17.36, 17.39, 17.84

Table 1. Spectral settings of the hyperspectral camera

2.2 Image processing

After image acquisition, the first step was performing the dark
current and radiometric correction. Both processes were
realized in the Hyperspectral imager software provide by the
manufacturer. The dark current process uses a dark image
acquired before the flight campaign, where the camera lens is
covered with a dark object of low reflectance. In our flight
campaign we used a synthetical material with average and
constant reflectance of 4%. The radiometric correction uses a
file provided by the manufacturer, which is created based on
their laboratory measures. After the radiometric correction, the
images are represented in radiance values.

The geometrical process aims to calculate the camera
calibration parameters from both sensors, e.g., focal length and
distortions, and the exterior orientation parameter (EOP) of
each image. Camera calibration used the geometrical self-
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calibration method. Aerial triangulation was performed in order
to calculate the EOPs. Initial position of each image of spectral
bands centered in 535.09 nm, 609 nm, 679.84 nm and 769.89
nm were used and refined with the Bundle Block Adjustment.
Those bands were used because two are in the first CMOS
sensor and the other two are in the second CMOS sensor. This
processing was applied in the Agisoft PhotoScan software,
which is based on Structure from Motion techniques. In
addition, a digital surface model (DSM) of the area was
calculated with a spatial resolution of 10 cm, which was used in
the radiometric block adjustment task. Regarding the remaining
21 spectral bands, which had not their EOP calculated during
the aerial triangulation process, it is noticed that they were
calculated using the methodology proposed by Honkavaara et
al. (2013; 2017).

Radiometric block adjustment was applied due to illumination
differences among images. Possible cause of differences is the
UAV movement, different cloud covering in the imaged area,
forest structure and influences of the bidirectional reflectance
distribution function (BRDF). The method applied was the one
from Honkavaara et al. (2013) and uses the Sun zenithal and
azimuthal angles and common points between overlapping
images. In order to perform this task, the radBA software
developed by Honkavaara et al. (2013; 2017) at Finnish
Geospatial Research Institute (FGI) was used.

Finally, a hyperspectral radiance orthophoto mosaic was
calculated with a ground sample distance of 10 cm, the same
resolution as the DSM generated. In sequence, using three
radiometric reference targets located in the area, the empirical
line method (Smith and Milton, 1999) was applied to transform
the pixels of the mosaic in reflectance factor values.

2.3 Individual tree crown detection

To perform the classification using the region-based approach,
the ITC detection was necessary. Previous studies showed that
the use of CHM provided could be used in this task (Nevalainen
et al., 2017; Nési et al., 2015). In this sense, using an airborne
laser scanner data provided by Fototerra company
(http://www.fototerra.com.br/ingles/) the CHM was calculated.
Full wave form laser data was provided with point cloud density
of 7.55 points/m?. Using the LAStools package (Isenburg, 2014)
the digital terrain model (DTM) was extracted. Moreover, the
highest points of the point cloud were extracted to compose the
DSM and then, subtracting the DTM from those data, a point
cloud representing the CHM of the area was calculated

The method used to separate the ITC was the superpixels using
the simple linear iterative clustering (SLIC) algorithm from
Achanta et al. (2012). With initial parameter of 20,000
superpixel, segments were generated. This parameter was
chosen due to the diversity of the area, with smaller and bigger
tree crowns. Considering this, to avoid oversegmentation of tree
crowns, where a single tree is represented in more than one
superpixel, manual editing of the was needed. Figure 3 shows
an example of the final superpixels of the area. It is important
noting that, the ITC delineation was just visually evaluated
based on the tree species recognized in field, as explained in the
next section.

(L)
Figure 3. Final superpixels representing the individual tree

crowns

2.4 Tree species classification

Two tree species classification were performed. Both were
performed with the RF classifier from Breiman (2001), which
uses multiple decision trees and the most popular vote as
criteria to the classification.

Using tree species identification and localization acquired
during field works realized in 2017 the training and validation
samples were defined. From the 13 tree species recognized,
only the four with greatest number of samples were used to
avoid mistakes which might be caused due to unbalanced
number of samples. Table 2 shows the tree species classified in
this study and their total number of trees samples, while
Figure 4 shows a spectral profile acquired of each specie.

. Popular Number of tree species
Specie o
name recognized in field
Copaifera langsdorffii Copaiba 25
Apuleia leiocarpa Garapa 18
Hymenaea courbaril Jatoba 14
Syagrus romanzoffiana Jeriva 34

Table 2. Tree species classified and their number of samples
recognized in field

Reflectance factor

500 550 600 650 700 750 800
Wavelength (nm)

Apuleia leiocarpa Copaifera lamgsdorffii —Syagrus romanzoffiana — Hymenaea courbaril

Figure 4. Sample spectra of each tree used to the classification

Tree species were associated to the superpixels using their
position acquired in field. In sequence, 80% of the samples
were randomly separated to train the classifier while, 20% were
separated to validate the results. Regarding the features used,
they were 28, where 25 corresponds to the spectral bands
acquired and three to the three first principal components (PC)
of the mosaic of hyperspectral images. The PC were extracted
using the ENVI software and the number of PC were chosen
because they represented more than 95% of data variance.
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The features of region-based classification were calculated
using the average value of each spectral band and PC in each
superpixel. The features of the pixel-based classification were
the nominal value of each pixel. RF classifier was applied in
WEKA software using the training samples to build the model
with the 10-fold cross validation. As parameter of the RF it is
highlighted the value 100, which were the number of decision
trees and number of interactions. Lastly, the classifications were
evaluated using the remaining samples, the 20% samples. The
statistics used to evaluate the results were the Cohen Kappa
coefficient, user and producer accuracies, as well as the F-Score
(Congalton, 1991; Li et al., 2012; Cohen, 1960)

3. RESULTS

The following sections show the results of each classification
approach.

3.1 Pixel-based classification.

Based on the 190,418 pixels used as training sample, the model
built using the 10-fold cross validation presented a kappa
coefficient of 38.43% and number of correctly classified
instances of 54.91%. User and producer accuracies varied from
44.30% to 72.70% and from 34.60% to 72%, respectively,
being the highest values to Hymenaea courbaril. F-Score varied
from 39.50% to 72.30%, where the lowest value was to Apuleia
leiocarpa and the highest was to Hymenaea courbaril. Table 3
presents the values resulting from the 10-fold cross validation.

Specie User accur. Producer accur. F-Score
Copaifera 44.30% 37.20% 40.40%
langsdorffii
IApule'a 45.90% 34.60% 39.50%
eiocarpa
Hymenaea 53.10% 69.40% 60.10%
courbaril
Syagru_s 72.70% 72.00% 72.30%
romanzoffiana

Table 3. Result of the 10-fold cross validation model of the RF
in the pixel-based approach classification

Applying this model in the validation set, the results were
worst, with a kappa coefficient of 18.10% and most part of
instances incorrectly classified, 61.54% against 38.46%.
Apuleia leiocarpa presented the lowest user and producer
accuracies, 23.90% and 14.70%, respectively, as well the lowest
F-Score value, 18.20%. The best results were achieved to
Hymenaea courbaril with 66.1% of user accuracy, 64.40% of
producer accuracy and 65.20% of F-Score. Table 4 and 5 shows
the results for the validation test as well as the confusion matrix
of the validation data.

Specie User ac. (%) Producer ac. (%) | F-Score
Copaifera. 46.50% 25.60% 33.10%
langsdorffii
Apuleia leiocarpa 23.90% 14.70% 18.20%
Hymenaea courbaril 30.50% 63.70% 41.20%
Syagrus 66.10% 64.40% 65.20%
romanzoffiana
Kappa coefficient 18.10%

Table 4. Results of the validation set when RF model is applied
in the pixel-based approach classification

classified as 2> a b c d
a = Copaifera 6593 4211 | 12669 | 2250
langsdorffii
b = Apuleia 3009 2599 11011 1070
leiocarpa
¢ = Hymenaea 3154 2348 10924 718
courbaril
d = Syagrus 1410 1708 1247 7881
romanzoffiana

Table 5. Confusion matrix of the validation set when RF model
is applied in the pixel-based approach classification

3.2 Region-based classification.

Region-based model of RF used a lower number of samples
because considered the average response of each superpixel and
feature. The 10-fold cross validation resulted in a model with
kappa coefficient of 36.57% and 54.79% of correctly classified
instances against 45.21% of incorrectly classified instances. The
lowest user and producer accuracies were obtained to Apuleia
leiocarpa, with both values of 0%. Highest values were 89.70%
and 96.30% to Syagrus romanzoffiana, which also had the
highest F-Score value, 92.90% (Table 6).

Specie User accur. Producer accur. F-Score
Copaifera 41.70% 47.60% 44.40%
langsdorffii
Apuleia 00.00% 00.00% 00.00%
leiocarpa
Hymenaea 33.30% 36.40% 34.80%
courbaril
Syagrus 89.70% 96.30% 92.90%
romanzoffiana

Table 6. Result of the 10-fold cross validation model of the RF
in the region-based approach classification

Applying this model to the superpixels of the validation test, it
was achieved a kappa coefficient of 33.72%, higher than the
one obtained for the pixel-based classification. The user and
producer accuracies varied from 0% to 100%, where the lowest
values were to Apuleia leiocarpa and the highest were to
Syagrus romanzoffiana. Table 7 shows the kappa coefficient
value and the accuracy metrics for each specie, while Table 8
shows the resultant confusion matrix.

Specie User ac. (%) | Producer ac. (%) | F-Score
Copaifera 25.00% 40.00% 30.80%
langsdorffii
Apuleia leiocarpa 00.00% 00.00% 00.00%
Hymenaea courbaril 50.00% 33.30% 40.00%
Syagrus 100.00% 100.00% 100.00%
romanzoffiana
Kappa coefficient 33.72%

Table 7. Results of the validation set when RF model is applied
in the region-based approach classification
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classified as > a b c d
a = Copaifera
langsdorffii 2 2 ! 0
b = Apuleia 4 0 0 0
leiocarpa
c= Hymen_aea 2 0 1 0
courbaril
d = Syagrus 0 0 0 7
romanzoffiana

Table 8. Confusion matrix of the validation set when RF model
is applied in the region-based approach classification

4. DISCUSSION AND CONCLUSION

This study compared the pixel-based and the region-based
classification of the same dataset. The hyperspectral images
were acquired over a tropical Atlantic Forest area using the
hyperspectral camera onboard UAV.

The results showed that the region-based approach performed
better when compared to the pixel-based approach which was
consistent to the existent literature even when applied in
different type of forests (Féret and Asner, 2013; Clark and
Roberts, 2012; Heinzel and Koch, 2012; Immitzer, Atzberger
and Koukal, 2012).

Considering the region-based method, superpixels were used to
the ITC detection and delineation. However, manual editing
was needed in order to correct the oversegmentation of tree
crowns. Regarding the classification results, it is noticed that
Apuleia leiocarpa could not be identified by the classification
model, presenting the worst results of classification, while all
the wvalidation samples of Syagrus romanzoffiana where
correctly identified. Probable causes of these results are the
spectral similarity between species as was possible to see in
Figure 4. Syagrus romanzoffiana could presented better results
because it has a different shape when compared with the other
tree species, it is a palm tree which can be used to check the
degree of regeneration of this forest, since it is one of the first
species to grow after the deforestation.

Finally, notwithstanding the challenging dataset, where the
spectral similarity of the tree species is high and the forest is
dense, results were promising and enables possibilities to
extract new features to be used in the region-based
classification.
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