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ABSTRACT: 

The objective of this work was the comparison of two different classification approaches to detect four different tree species of a 

highly diverse tropical Atlantic Forest area. In order to achieve the objective, images were acquired with the Rikola hyperspectral 

camera onboard the UX4 UAV. The study area is in the Western part of São Paulo State, a tropical Atlantic Forest area protected by 

governmental laws, which contains areas already deforested in the past and which are currently in regeneration. The tested 

approaches were one based only in the pixel values and other one based in regions. After the image acquisition, the images were 

radiometrically and geometrically processed. In addition, an airborne laser scanning point cloud was used to calculate the canopy 

height model of the area, which was used to detect the individual tree crowns with the superpixels method. Those superpixels were 

used to the region-based classification and to feature extraction. A total of 28 features were extracted where 25 correspond to the 

spectral bands acquired with the Rikola camera and three correspond to the three first principal components of the images. The 

features were extracted from the 91 samples recognized during a field work. From the total of samples, 19 were separated to validate 

the classification results. The chosen classifier was the Random Forests and the results presented a kappa coefficient of 18.20% and 

36.57% for the pixel-based and region-based classifications showing that the second one had a better performance. 

1. INTRODUCTION

Tree species recognition topic has been increased in the last 

years due to the forest importance and the development of 

different sensors and platforms to acquired Remote Sensing 

data (Fassnacht et al. 2016; Maschler, Atzberger, Immitzer, 

2018). Knowledge of the tree species location can contribute to 

the sustainable management of forests, which has environmental 

and economic importance (Matsuki, Yokoya and Iwakasaki, 

2015). Forests are not only habitat of thousands of different 

species, they play an important role in the carbon and water 

cycle and moreover, provide feedstock resources (Paneque-

Gálvez et al., 2014; Romijn et al., 2015). In addition, mapping 

tree species allied with structural information can be a useful 

data to know the forest composition, with data about dominant 

species, biomass and successional stage of forest recovering. 

Regarding the tree species mapping for forest inventories, they 

can be done using two mainly approaches: using data acquired 

in field or using remotely sensed data. The first one is not 

suitable, especially when the trees information are required over 

larger areas and the monitoring needs to repetitive (Immitzer, 

Atzberger, Koukal, 2012). Currently, with the miniaturized 

sensors and Unmanned Aerial Vehicles (UAVs) remotely 

information can be cheaper and faster acquired in comparison 

with the use of aircrafts or satellites especially if a higher 

temporal resolution is required. The use of UAVs can provide 

images with very high spatial resolution (VHSR), i.e., 

centimetres. When hyperspectral sensor is on-board of those 

platforms, besides the VHSR information, the spectral 

information can be acquired in a more detailed way, in dozens 

of spectral bands, sufficient to reconstruct the spectral signature 

of targets and being possible to show spectral differences not 

detected by multispectral data. 

Classification approaches, among features and classifiers, are 

also important to tree species mapping in order to achieve better 

results. Nevalainen et al. (2017) applied five different classifiers 

in a region-based approach to identify four tree species in boreal 

forest in Finland. Different structural and spectral set of features 

were extract in a circular area around each tree centre to the 

classification. The best result was achieved with the Random 

Forests (RF) and Multilayer Perceptron classifiers, around 95% 

of overall accuracy each. 

Using the support vector machine (SVM) classifier, 

hyperspectral images and airborne laser scanner (ALS) data, 

Dalponte et al. (2014) classified three tree species of boreal 

forest from Norway. The authors verified different accuracies 

when using manual and automatically individual tree crowns 

(ITCs) where the best results were achieved with the manual 

ITCs. Another find of the authors were related with the 

selection of the training samples, being the spectral feature more 

influential than the information of the canopy height model 

(CHM). 

Immitzer, Atzberger and Koukal (2012) compared pixel-based 

and object-based approaches of four tree species classification 

in temperate forest in Austria. The authors used WorldView-2 

satellite images and the RF classifier concluding that the object-

based approach had a better performance than the pixel-based 

approach. Moreover, Ferreira et al. (2016) compared three 

different classifiers in hyperspectral and multispectral data from 
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Brazilian tropical Atlantic Forest using a pixel-based approach. 

They also tested an object-oriented approach to the 

classification, achieving different accuracies. The best results 

were for the linear discriminant analysis, 90.10% of average 

accuracy, in the object-oriented approach. 

 

It is worth noting, the importance of forest studies regarding the 

tree species classification. It is worth noting, the importance of 

forest studies regarding the tree species classification. 

Nonetheless, not only different approaches to identify tree 

species need to be studied, but need to be applied in different 

type of forests such as the Brazilian tropical Forests, which is 

still few studied according to Fassnacht et al. (2016).  In this 

sense, the objective of this work is to test two different 

approaches to tree species classification of Brazilian Atlantic 

Forest, the pixel-based and region-based classifications one. 

 

1.1 Study area 

The study area is a Brazilian tropical Atlantic Forest fragment 

located in the Western part of São Paulo State, in Euclides da 

Cunha Paulista. It is a fragment protected by governmental law 

inside the Black-Lion Tamarin ecological station (ESEC-MLP). 

ESEC-MLP is composed by four different fragments, Santa 

Maria, Tucano, Água Sumida and Ponte Branca. The study area 

is inside Ponte Branca and has approximately 500 m by 130 m 

in length and width, respectively. Is a transitional area in terms 

of successional stages. The border of the area, which is closest 

to the road has smaller trees with an average height of 7.5 m. 

The area further away from the road comprises trees up to 

approximately 20 m of height. According to data collected 

during field works conducted between 2015 and 2017, it was 

verified that the area comprises more than 20 different tree 

species with diameter at breast height bigger than 3.8 cm 

(Berveglieri et al., 2016; Miyoshi et al., 2018). Figure 1 shows 

images taken outside and inside the study area, presenting the 

heterogeneity of the area. 

 

 

Figure 1. Images of the study area. a) Outside the area; b) c) 

Inside the area 

 

 

2. METHODOLOGY 

The data processing included the following steps: i) Image 

acquisition; ii) Image processing (dark current and radiometric 

corrections as well as geometric processing and radiometric 

block adjustment); iii) Individual tree crown detection; iv) 

Features extraction; v) Tree species classification and 

evaluation. 

 

2.1 Image acquisition 

Using the UAV named UX4 developed by Nuvem UAV 

(http://nuvemuav.com/) specially to carry the Rikola 

hyperspectral camera, images were acquired in July 1st of 2017. 

UX4 is a quadcopter controlled by PixHawk autopilot and able 

to fly until 30 min depending on weather, battery and payload 

conditions. Besides the Rikola camera, the payload is composed 

by a global navigation satellite system (GNSS) to record the 

position of the UAV and one RGB camera (GoPro Hero 4 

Black). Figure 2 shows the UX4 UAV during a field campaign 

with the Rikola camera attached. The flight mission was 

realized from 10h14 to 10h24, local time (UTC-3) with the 

UAV speed of 4 m/s, providing images with forward overlap 

higher than 70%. 

 

 

 Figure 2. UX4 UAV and its payload 

Rikola camera is a hyperspectral frame camera based on the 

Fabry-Pérot Interferometer (FPI). It can acquire different set of 

spectral bands, due to the FPI, in the two CMOS sensors. It has 

an approximated focal length of 8.7 mm and the frame format 

sensors are sized of 1017 x 648 pixels with a pixel size of 5.5 

µm (Rikola, 2015; Miyoshi et al., 2018). 25 spectral bands 

distributed in the range between 500 nm and 900 nm were 

acquired as shown in Table 1. 

 

Central wavelengths of each spectral band (nm): 506.22, 519.94, 

535.09, 550.39, 565.10, 580.16, 591.90, 609.00, 620.22, 628.73, 

650.96, 659.72, 669.75, 679.84, 690.28, 700.28, 710.06, 720.17, 

729.57, 740.42, 750.16, 769.89, 780.49, 790.30, 819.66 

FWHM (nm): 12.44, 17.38, 16.84, 16.53, 17.26, 15.95, 16.61, 

15.08, 16.26, 15.30, 14.44, 16.83, 19.80, 20.45, 18.87, 18.94, 19.70, 

19.31, 19.01, 17.98, 17.97, 18.72, 17.36, 17.39, 17.84 

Table 1. Spectral settings of the hyperspectral camera 

 

2.2 Image processing 

After image acquisition, the first step was performing the dark 

current and radiometric correction. Both processes were 

realized in the Hyperspectral imager software provide by the 

manufacturer. The dark current process uses a dark image 

acquired before the flight campaign, where the camera lens is 

covered with a dark object of low reflectance. In our flight 

campaign we used a synthetical material with average and 

constant reflectance of 4%. The radiometric correction uses a 

file provided by the manufacturer, which is created based on 

their laboratory measures. After the radiometric correction, the 

images are represented in radiance values. 

 

The geometrical process aims to calculate the camera 

calibration parameters from both sensors, e.g., focal length and 

distortions, and the exterior orientation parameter (EOP) of 

each image. Camera calibration used the geometrical self-
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calibration method. Aerial triangulation was performed in order 

to calculate the EOPs. Initial position of each image of spectral 

bands centered in 535.09 nm, 609 nm, 679.84 nm and 769.89 

nm were used and refined with the Bundle Block Adjustment. 

Those bands were used because two are in the first CMOS 

sensor and the other two are in the second CMOS sensor. This 

processing was applied in the Agisoft PhotoScan software, 

which is based on Structure from Motion techniques. In 

addition, a digital surface model (DSM) of the area was 

calculated with a spatial resolution of 10 cm, which was used in 

the radiometric block adjustment task. Regarding the remaining 

21 spectral bands, which had not their EOP calculated during 

the aerial triangulation process, it is noticed that they were 

calculated using the methodology proposed by Honkavaara et 

al. (2013; 2017). 

 

Radiometric block adjustment was applied due to illumination 

differences among images. Possible cause of differences is the 

UAV movement, different cloud covering in the imaged area, 

forest structure and influences of the bidirectional reflectance 

distribution function (BRDF). The method applied was the one 

from Honkavaara et al. (2013) and uses the Sun zenithal and 

azimuthal angles and common points between overlapping 

images. In order to perform this task, the radBA software 

developed by Honkavaara et al. (2013; 2017) at Finnish 

Geospatial Research Institute (FGI) was used. 

 

Finally, a hyperspectral radiance orthophoto mosaic was 

calculated with a ground sample distance of 10 cm, the same 

resolution as the DSM generated. In sequence, using three 

radiometric reference targets located in the area, the empirical 

line method (Smith and Milton, 1999) was applied to transform 

the pixels of the mosaic in reflectance factor values. 

 

2.3 Individual tree crown detection 

To perform the classification using the region-based approach, 

the ITC detection was necessary. Previous studies showed that 

the use of CHM provided could be used in this task (Nevalainen 

et al., 2017; Näsi et al., 2015). In this sense, using an airborne 

laser scanner data provided by Fototerra company 

(http://www.fototerra.com.br/ingles/) the CHM was calculated. 

Full wave form laser data was provided with point cloud density 

of 7.55 points/m2. Using the LAStools package (Isenburg, 2014) 

the digital terrain model (DTM) was extracted. Moreover, the 

highest points of the point cloud were extracted to compose the 

DSM and then, subtracting the DTM from those data, a point 

cloud representing the CHM of the area was calculated 

 

The method used to separate the ITC was the superpixels using 

the simple linear iterative clustering (SLIC) algorithm from 

Achanta et al. (2012). With initial parameter of 20,000 

superpixel, segments were generated. This parameter was 

chosen due to the diversity of the area, with smaller and bigger 

tree crowns. Considering this, to avoid oversegmentation of tree 

crowns, where a single tree is represented in more than one 

superpixel, manual editing of the was needed. Figure 3 shows 

an example of the final superpixels of the area. It is important 

noting that, the ITC delineation was just visually evaluated 

based on the tree species recognized in field, as explained in the 

next section. 

 

 

Figure 3. Final superpixels representing the individual tree 

crowns 

 

2.4 Tree species classification 

Two tree species classification were performed. Both were 

performed with the RF classifier from Breiman (2001), which 

uses multiple decision trees and the most popular vote as 

criteria to the classification. 

 

Using tree species identification and localization acquired 

during field works realized in 2017 the training and validation 

samples were defined. From the 13 tree species recognized, 

only the four with greatest number of samples were used to 

avoid mistakes which might be caused due to unbalanced 

number of samples. Table 2 shows the tree species classified in 

this study and their total number of trees samples, while 

Figure 4 shows a spectral profile acquired of each specie. 

 

Specie 
Popular 

name 

Number of tree species 

recognized in field 

Copaifera langsdorffii Copaiba 25 

Apuleia leiocarpa Garapa 18 

Hymenaea courbaril Jatobá 14 

Syagrus romanzoffiana Jerivá 34 

Table 2. Tree species classified and their number of samples 

recognized in field  

 

 

Figure 4. Sample spectra of each tree used to the classification 

 

Tree species were associated to the superpixels using their 

position acquired in field. In sequence, 80% of the samples 

were randomly separated to train the classifier while, 20% were 

separated to validate the results. Regarding the features used, 

they were 28, where 25 corresponds to the spectral bands 

acquired and three to the three first principal components (PC) 

of the mosaic of hyperspectral images. The PC were extracted 

using the ENVI software and the number of PC were chosen 

because they represented more than 95% of data variance. 
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The features of region-based classification were calculated 

using the average value of each spectral band and PC in each 

superpixel. The features of the pixel-based classification were 

the nominal value of each pixel. RF classifier was applied in 

WEKA software using the training samples to build the model 

with the 10-fold cross validation. As parameter of the RF it is 

highlighted the value 100, which were the number of decision 

trees and number of interactions. Lastly, the classifications were 

evaluated using the remaining samples, the 20% samples. The 

statistics used to evaluate the results were the Cohen Kappa 

coefficient, user and producer accuracies, as well as the F-Score 

(Congalton, 1991; Li et al., 2012; Cohen, 1960) 

  

 

3. RESULTS 

The following sections show the results of each classification 

approach. 

 

3.1 Pixel-based classification. 

Based on the 190,418 pixels used as training sample, the model 

built using the 10-fold cross validation presented a kappa 

coefficient of 38.43% and number of correctly classified 

instances of 54.91%. User and producer accuracies varied from 

44.30% to 72.70% and from 34.60% to 72%, respectively, 

being the highest values to Hymenaea courbaril. F-Score varied 

from 39.50% to 72.30%, where the lowest value was to Apuleia 

leiocarpa and the highest was to Hymenaea courbaril. Table 3 

presents the values resulting from the 10-fold cross validation. 

 

Specie User accur. Producer accur. F-Score 

Copaifera 

langsdorffii 
44.30% 37.20% 40.40% 

Apuleia 

leiocarpa 
45.90% 34.60% 39.50% 

Hymenaea 

courbaril 
53.10% 69.40% 60.10% 

Syagrus 

romanzoffiana 
72.70% 72.00% 72.30% 

Table 3. Result of the 10-fold cross validation model of the RF 

in the pixel-based approach classification 

 

Applying this model in the validation set, the results were 

worst, with a kappa coefficient of 18.10% and most part of 

instances incorrectly classified, 61.54% against 38.46%. 

Apuleia leiocarpa presented the lowest user and producer 

accuracies, 23.90% and 14.70%, respectively, as well the lowest 

F-Score value, 18.20%. The best results were achieved to 

Hymenaea courbaril with 66.1% of user accuracy, 64.40% of 

producer accuracy and 65.20% of F-Score. Table 4 and 5 shows 

the results for the validation test as well as the confusion matrix 

of the validation data. 

 

Specie User ac. (%) Producer ac. (%) F-Score 

Copaifera 

langsdorffii 
46.50% 25.60% 33.10% 

Apuleia leiocarpa 23.90% 14.70% 18.20% 

Hymenaea courbaril 30.50% 63.70% 41.20% 

Syagrus 

romanzoffiana 
66.10% 64.40% 65.20% 

Kappa coefficient 18.10% 

Table 4. Results of the validation set when RF model is applied 

in the pixel-based approach classification 

 

classified as → a b c d 

a = Copaifera 

langsdorffii 
6593 4211 12669 2250 

b = Apuleia 

leiocarpa 
3009 2599 11011 1070 

c = Hymenaea 

courbaril 
3154 2348 10924 718 

d = Syagrus 

romanzoffiana 
1410 1708 1247 7881 

Table 5. Confusion matrix of the validation set when RF model 

is applied in the pixel-based approach classification 

 

3.2 Region-based classification. 

Region-based model of RF used a lower number of samples 

because considered the average response of each superpixel and 

feature. The 10-fold cross validation resulted in a model with 

kappa coefficient of 36.57% and 54.79% of correctly classified 

instances against 45.21% of incorrectly classified instances. The 

lowest user and producer accuracies were obtained to Apuleia 

leiocarpa, with both values of 0%. Highest values were 89.70% 

and 96.30% to Syagrus romanzoffiana, which also had the 

highest F-Score value, 92.90% (Table 6). 

 

Specie User accur. Producer accur. F-Score 

Copaifera 

langsdorffii 
41.70% 47.60% 44.40% 

Apuleia 

leiocarpa 
00.00% 00.00% 00.00% 

Hymenaea 

courbaril 
33.30% 36.40% 34.80% 

Syagrus 

romanzoffiana 
89.70% 96.30% 92.90% 

Table 6. Result of the 10-fold cross validation model of the RF 

in the region-based approach classification 

 

Applying this model to the superpixels of the validation test, it 

was achieved a kappa coefficient of 33.72%, higher than the 

one obtained for the pixel-based classification. The user and 

producer accuracies varied from 0% to 100%, where the lowest 

values were to Apuleia leiocarpa and the highest were to 

Syagrus romanzoffiana. Table 7 shows the kappa coefficient 

value and the accuracy metrics for each specie, while Table 8 

shows the resultant confusion matrix. 

 

Specie User ac. (%) Producer ac. (%) F-Score 

Copaifera 

langsdorffii 
25.00% 40.00% 30.80% 

Apuleia leiocarpa 00.00% 00.00% 00.00% 

Hymenaea courbaril 50.00% 33.30% 40.00% 

Syagrus 

romanzoffiana 
100.00% 100.00% 100.00% 

Kappa coefficient 33.72% 

Table 7. Results of the validation set when RF model is applied 

in the region-based approach classification 
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classified as → a b c d 

a = Copaifera 

langsdorffii 
2 2 1 0 

b = Apuleia 

leiocarpa 
4 0 0 0 

c = Hymenaea 

courbaril 
2 0 1 0 

d = Syagrus 

romanzoffiana 
0 0 0 7 

Table 8. Confusion matrix of the validation set when RF model 

is applied in the region-based approach classification 

 

 

4. DISCUSSION AND CONCLUSION 

This study compared the pixel-based and the region-based 

classification of the same dataset. The hyperspectral images 

were acquired over a tropical Atlantic Forest area using the 

hyperspectral camera onboard UAV. 

 

The results showed that the region-based approach performed 

better when compared to the pixel-based approach which was 

consistent to the existent literature even when applied in 

different type of forests (Féret and Asner, 2013; Clark and 

Roberts, 2012; Heinzel and Koch, 2012; Immitzer, Atzberger 

and Koukal, 2012). 

 

Considering the region-based method, superpixels were used to 

the ITC detection and delineation. However, manual editing 

was needed in order to correct the oversegmentation of tree 

crowns. Regarding the classification results, it is noticed that 

Apuleia leiocarpa could not be identified by the classification 

model, presenting the worst results of classification, while all 

the validation samples of Syagrus romanzoffiana where 

correctly identified. Probable causes of these results are the 

spectral similarity between species as was possible to see in 

Figure 4. Syagrus romanzoffiana could presented better results 

because it has a different shape when compared with the other 

tree species, it is a palm tree which can be used to check the 

degree of regeneration of this forest, since it is one of the first 

species to grow after the deforestation. 

 

Finally, notwithstanding the challenging dataset, where the 

spectral similarity of the tree species is high and the forest is 

dense, results were promising and enables possibilities to 

extract new features to be used in the region-based 

classification. 
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