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ABSTRACT: 
 
This study aimed to characterize surface minerals from high dimensional HyTES (Hyperspectral Thermal Emission 
Spectrometer) data comprised of 256 spectral bands between 7.5 and 12 µm (i.e., TIR domain of the electromagnetic spectrum). 
The HyTES is across-track imager and can image 512 pixels with spatial resolution varies between 5 to 50 m depending upon 
aircraft flying height. HyTES is developed to support the HyspIRI (Hyperspectral Infrared Imager) mission by acquiring TIR 
data at much higher spectral and spatial resolutions in-order to define the optimum band positions for the TIR instrument of   
HyspIRI. For earth compositional mapping, the HyTES images of Cuprite and Death Valley regions were acquired in summer 
2014 and spectral emissivities of fifteen minerals classes were extracted from regions of known mineral compositions and were 
randomly divided into training and testing sets (each mineral class com-prised of 100 spectra). These extracted emissivity 
signatures were then used for categorizing minerals and for finding HyspIRI's optimal band positions for earth composition 
mapping using Genetic Algorithm (GA) coupled with Spectral angle mapper (SAM). The GA-SAM was trained for fifteen 
mineral classes and the algorithms were run iteratively 40 times. High calibration (>95 %) and validation (>90 %) accuracies 
were achieved with limited numbers (seven) of spectral bands selected by GA-SAM. Knowing the important band Positions will 
help scientist of HyspIRI group to place spectral bands at regions were accuracies of Earth compositional mapping can be 
enhanced. 
 

1. INTRODUCTION 

Satellite remote sensing techniques are comprehensive 
means for geological analysis, especially in unapproachable 
areas of the earth's surface (Khan and Mahmood, 2008). 
For geological mapping, remote sensing is extremely 
effective in arid and semi-arid regions where geologic 
structures are widely uncovered (Khan and Mahmood, 
2008). Work has been done using multispectral satellite 
images for mapping minerals. But due to wide band width 
(as the case with multispectral) is not an ideal system for 
mineral mapping as the absorption features are narrow and 
masked out with broad band width, although some people 
used band ratios and decorrelation stretch for mineral 
mapping. Hyperspectral sensors, because of their high 
spectral details over adjacent narrow bands, have confirmed 
to be a valuable tool for mapping earth composition 
(Ramsey et al., 2012). However, numerous spectral bands 
in hyperspectral sensors possess the problems of 
redundancy and high dimensionality. Moreover, processing 
hyperspectral data is computationally intensive and 
demanding high speed computer (Ullah et al., 2012). To 
overcome these afore mentioned challenges, the 
dimensionality of the data needs to be reduced through 
either band selection or band extraction. Band selection is 
often preferred over band extraction as the physical 
meaning of the data remains unaffected (Hao and Qu, 2009; 
Lee and Landgrebe, 1993). Genetic algorithm is a well-
known band selector and dimensionality reduction 
technique for spectral analysis (Ullah et al., 2012; Vaiphasa 
et al., 2007). 

 Hyperspectral VNIR-SWIR data for geology have been the 
attention of research and development for many years 
(Vaughan et al., 2003; Vaughan et al., 2005). But there are 
certain minerals that cannot be identified in the VNIR-
SWIR as there absorption features rests in TIR region of 
the electromagnetic spectrum. Minerals that can be readily 
identified in TIR include clay, carbonate, sulfate, and felsic 
versus mafic minerals (Crowley, 1996; Vaughan et al., 
2003; Vaughan et al., 2005). 
This study aims to map earth composition (minerals) using 
thermal infrared (TIR) data. In thermal infrared (TIR) 
region geology has been rarely explored and most of the 
fundamental absorption features for various minerals like 
Al-OH, Mg-OH, CaCO3, and sulfate minerals are situated 
in the TIR regions. Given this fact, the HyspIRI mission 
will include TIR sensor for mapping earth composition and 
lithology. HyspIRI thermal infrared (TIR) band positions 
will be based on its importance for mapping various surface 
minerals and this study is a precursor for finding optimal 
waveband positions for earth composition mapping using 
HyTES data. More specifically, this study aims to 
investigate the potential of TIR hyperspectral dataset for 
mineral mapping in Cuprite and Death Valley regions.  
 

2. METHODS AND MATERIALS 

2.1 Study Area 

 Cuprite Hills (Nevada) and Death Valley (California) are 
considered as study sites for the proposed research. The 
climate of these regions is arid in nature with barren and 
exposed geology making them ideal grounds for geological 
expeditions. Previous geological work reveals that both the 
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areas are mineralogically rich, contains various important 
minerals such as sulfates (i.e., alunite, jarosite, kaolinite, 
muscovite), carbonate minerals (include calcite, dolomite 
and montmorillonite), iron oxides and hydroxides (i.e., 
hematite, goethite borates hydroboracites,  pinnoite, 
rivadivate), evaporates minerals (i.e., anhydrite playa 
brines) (Clark et al., 2003; Crowley, 1993). 
 
 

 
 
Figure 1. Study Areas 
  

2.2 Dataset 

The Hyperspectral Thermal Emission Spectrometer 
(HyTES) data (images) were used in this study. HyTES is 
an airborne imaging spectrometer with two hundred and 
fifty six (256) spectral bands placed between 7.5 and 12 µm 
(i.e., TIR domain of the electromagnetic spectrum). HyTES 
is across-track imager and can image 512 pixels with 
spatial resolution varies between 5 to 50 m depending upon 
aircraft flying height.  HyTES is developed to support the 
HyspIRI (Hyperspectral Infrared Imager) mission. HyTES 
will help the HyspIRI group to provide a data at much 
higher spectral and spatial resolutions in-order to define the 
optimum band positions for the TIR instrument of  
HyspIRI. The HyspIRI mission will revolve in Low Earth 
Orbit (LEO) and will carry two instruments onboard. The 

Hyperspectral imaging spectrometer will measure from the 
visible to short wave infrared (VSWIR: 380 nm - 2500 nm) 
in 10 nm adjacent bands and a multispectral imager will 
acquire data from 3 to 12 um (MIR & TIR: mid and 
thermal infrared) in eight spectral bands. The visible 
shortwave infrared (VSWIR) and thermal infrared (TIR) 
instruments both will have 60 m spatial resolution at nadir. 
Visible shortwave infrared will have a revisit cycle of 19 
days and the thermal infrared (TIR) will have a revisit of 5 
days; with swath width of 145 and 600 km respectively. 

2.3 Image Processing 

Genetic algorithms together with the spectral angle mapper 
(SAM) was used to select a meaningful subset of 
wavebands sensitive enough for the classification of 
various minerals in Cuprite Nevada and Death Valley CA 
(Ullah et al., 2012; Vaiphasa et al., 2007). Genetic 
algorithms is a popular type of evolutionary optimization 
computation, developed on the notion of natural selection 
(Fang et al., 2003; Ullah et al., 2012; Vaiphasa et al., 
2007).  
Spectral angle mapper (SAM) was used as an objective 
function for the genetic algorithms. Spectral angle mapper 
(SAM) nearest neighbour classifier evaluates the fitness 
values of the chromosome population during the process of 
evolution. The SAM determines the spectral match between 
two spectra (i.e., target and reference) by computing the 
angle between them in an n-dimensional space (Ullah & 
Groen, 2012).  
 

 
 

Figure 2. The methodology followed 
 
 
 

3. RESULTS AND DISCUSSIONS 

3.1 Minerals Spectral profile in the TIR 
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The spectral profiles of various mineral classes are distinct 
from each other (Figure. 3). The absorption features 
(associated with the different chemical compositions of a 
mineral) are located at different wavelength region. The 
variations in the absorption feature make the basis for   
distinguishing minerals from each other in the Image. 
 

 

 
 

 
 
 
 

Figure 3. The spectra profiles of various minerals 
 

3.2 Classification performance  

The Genetic algorithms coupled with Spectral Angle 
Mapper yielded a high accuracy for both the training and 
testing datasets (Table 1). Majority of the minerals 
including Quartz, Basalt, Alunite, Carbonate, Kaolinite 
minerals shows a perfect match with their reference spectra 
using meaningful subset of bands selected by genetic 
algorithms and SAM. The average training and testing 
accuracy were 97.4% and 95.87% respectively. 

 

Table 1. Classification accuracy of SAM and Genetic 
algorithms using testing datasets  
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Quartz 96 0 0 0 0 0 0 0 0 0 0 0 0 0 4 100 96 

Quartz latite dike 0 87 0 0 0 13 0 0 0 0 0 0 0 0 0 100 87 

Stone wall playa 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 100 100 

Hydrated silica 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 100 100 

Nontronite 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100 100 

White mica 0 13 0 0 0 87 0 0 0 0 0 0 0 0 0 100 87 

Alunite 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 100 100 

Basalt 0 0 0 0 0 0 0 98 0 2 0 0 0 0 0 100 98 

Calcite 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 100 100 

Carbonate 0 0 0 1 0 2 0 14 0 83 0 0 0 0 0 100 83 

Chlorite 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 100 100 

Dickite 0 2 0 1 0 0 0 0 0 0 0 96 0 1 0 100 96 

Hematite 0 0 0 0 0 0 0 0 0 0 0 0 91 9 0 100 91 

Kaolinite Hill 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 100 100 

Opal_Hill 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 

Totals 96 102 100 102 100 102 100 112 100 85 100 96 91 110 104 1500 
 Producer Accuracy% 100 85.3 100 98.0 100 85.3 100 87.5 100 97.6 100 100 100 90.9 96.1 

  
Overall Accuracy = 95.87, Kappa= 0.95 
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3.3  Selected waveband positions  

Genetic algorithms coupled with Spectral Angle mapper 
pruned seven (7) spectral bands at each run. The algorithms 
were iteratively run 40 times. For 40 runs, the counts of 
selected bands (also called winner genes) are detailed in 
Figure 4. The waveband regions with high towering were 
the spectral domain where winners were selected multiple 
times and representing the importance of these wavelengths 
for mineral mapping. The minute analysis of Figure 4 
shows that the selected wavebands are clustering at certain 
waveband positions while most part of the TIR spectrum 
remains empty. The selected wavebands are also 
corresponding to the waveband position where 
characteristic absorption features of various minerals 
occure.  

 
Figure 4. The count of selected (winner genes) bands after 
40 runs. 
 
 

 
4 CONCLUSIONS 

This study aims to find HyspIRI optimal TIR wavebands 
position for earth compositional mapping using HyTES 
data of Cuprite and Death Valley regions. Optimization 
procedure (GA-SAM) is used as spectral bands selector. 
The high dimensional HyTES (comprised of 256 spectral 
bands) data are used to select meaningful subsets of bands 
for earth compositional mapping. The GA-SAM yields a 
high calibration (>95 %) and validation (>90 %) accuracies 
with limited numbers (seven) of spectral bands. This study 
concludes that certain wavelength regions hold high 
information for earth compositional mapping and are more 
important than others. Knowing the important band 
positions will help scientist of HyspIRI team (at 
NASA/JPL) to place spectral bands at regions were 
accuracies of earth compositional mapping can be 
enhanced. 
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