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ABSTRACT:

In this paper, we address the semantic interpretation of urban environments on the basis of multi-modal data in the form of RGB
color imagery, hyperspectral data and LiDAR data acquired from aerial sensor platforms. We extract radiometric features based
on the given RGB color imagery and the given hyperspectral data, and we also consider different transformations to potentially
better data representations. For the RGB color imagery, these are achieved via color invariants, normalization procedures or
specific assumptions about the scene. For the hyperspectral data, we involve techniques for dimensionality reduction and feature
selection as well as a transformation to multispectral Sentinel-2-like data of the same spatial resolution. Furthermore, we extract
geometric features describing the local 3D structure from the given LiDAR data. The defined feature sets are provided separately
and in different combinations as input to a Random Forest classifier. To assess the potential of the different feature sets and their
combination, we present results achieved for the MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set.

1. INTRODUCTION

The acquisition, exploration and analysis of natural and
built environments represents a topic of great interest in
photogrammetry and remote sensing. For data acquisition,
different sensors can be used which allow capturing different
characteristics of a scene (e.g. geometric or radiometric data)
in different data representations (e.g. point clouds, meshes or
imagery) with different resolutions. The use of such individual
types of geospatial data or their combination, in turn, has
received much attention in recent years, particularly regarding
the acquisition and analysis of urban scenes which provide a
rich diversity of both natural and man-made objects. In this
context, however, most investigations focus on the use of aerial
imagery and the corresponding Digital Surface Model (DSM)
(Rottensteiner et al., 2012; Gerke and Xiao, 2014; Audebert et
al., 2018; Liu et al., 2017; Chen et al., 2018), thereby neglecting
other potentially useful types of geospatial data.

In this paper, we address the semantic interpretation of
urban environments on the basis of multi-modal data acquired
from aerial sensor platforms. The considered types of
data comprise RGB color imagery, hyperspectral data and
LiDAR data. From the radiometric data, we extract
features based on the reflectance values corresponding to
the respective spectral bands, and we also consider the
effect of different transformations to potentially better data
representations (Weinmann and Weinmann, 2018). For the
transfer of RGB color imagery to a potentially better data
representation, we apply transformations derived via color
invariants, normalization procedures or specific assumptions
about the color representation of a scene. For the transfer of
hyperspectral data to a potentially better data representation,
we take into account that the spectral bands of the given
hyperspectral data are located directly next to each other
with respect to the electromagnetic spectrum. Consequently,

the acquired reflectance values of neighboring spectral bands
tend to be strongly correlated. This kind of redundancy
typically decreases the quality of the achieved classification
results, so that approaches for dimensionality reduction or
band selection are commonly involved. While dimensionality
reduction techniques focus on transforming the given data
into a new space of lower dimensionality (van der Maaten
et al., 2009), band selection techniques allow conclusions
about relationships with respect to physical properties as
they retain a subset of the original spectral bands (Guyon
and Elisseeff, 2003; Saeys et al., 2007) which, in turn,
can further be used for conclusions regarding a diversity of
environmental applications. For dimensionality reduction, we
apply a standard encoding of hyperspectral data using Principal
Component Analysis (PCA). For band selection, we apply
Correlation-based Feature Selection (Hall, 1999). Furthermore,
we also apply a transformation of given hyperspectral data
to multispectral Sentinel-2-like data of the same resolution
(Weinmann et al., 2018). Such a transformation has already
been proposed for the simulation of Sentinel-2 and other
multispectral imagery (Thonfeld et al., 2012) and been applied
for assessing land use (Elbertzhagen et al., 2012) or for
geological and soil analyses (van der Meer et al., 2014). From
the geometric data, we extract a set of commonly used low-level
geometric features to describe the local neighborhood around
each 3D point of the LiDAR data (Weinmann, 2016). For
each 3D point, these geometric features are derived from the
spatial arrangement and thus the coordinates of that 3D point
and other 3D points within its local neighborhood, where a
locally adaptive neighborhood definition is involved. Finally,
the different sets of radiometric and geometric features are
provided separately and in different combinations as input to
a Random Forest classifier (Breiman, 2001).

This paper represents an extension of our previous work
(Weinmann and Weinmann, 2018) with a particular focus on
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1) further options regarding the involved sets of features and
2) a comprehensive analysis of the potential of different feature
sets and their combination for urban scene interpretation. The
choice of using hand-crafted features and a standard classifier
is motivated by a scenario where only few training data
are available and modern deep learning approaches therefore
cannot be trained appropriately.

After briefly summarizing related work in Section 2, we
present our framework for the semantic interpretation of urban
environments on the basis of multi-modal data in Section 3.
Subsequently, in Section 4, we present the results achieved
with our framework on a benchmark dataset. These results
are discussed in detail in Section 5. Finally, in Section 6, we
provide concluding remarks and suggestions for future work.

2. RELATED WORK

Many investigations addressing the semantic interpretation
of urban environments rely on data in the form of true
orthophotos and the corresponding DSMs (Rottensteiner et al.,
2012; Gerke, 2014). In this regard, the traditional approaches
focus on extracting hand-crafted features and using standard
classifiers such as Random Forests (Weinmann and Weinmann,
2018; Gerke and Xiao, 2014) or Conditional Random Fields
(CRFs) (Gerke, 2014). In recent years, however, the use
of modern deep learning techniques has become more and
more popular, as such techniques allow jointly performing
feature learning and classification with respect to the given
classification task. Among a diversity of proposed network
architectures, exemplary approaches rely on the use of a fully
convolutional network (Sherrah, 2016), an encoder-decoder
architecture (Volpi and Tuia, 2017) or an adaptation of the
ResNet architecture (Chen et al., 2018) for the semantic
interpretation of urban environments based on true orthophotos
and the corresponding DSMs. Furthermore, different strategies
have been proposed to fuse such multi-modal geospatial data
within a deep learning framework (Marmanis et al., 2016;
Audebert et al., 2016; Audebert et al., 2018; Liu et al., 2017).

While most of the related approaches focus on the classification
part, only little attention has been paid to the given input
data. Few investigations involve basic hand-crafted features
represented by the Normalized Difference Vegetation Index
(NDVI) and the normalized Digital Surface Model (nDSM)
(Gerke, 2014; Audebert et al., 2016; Audebert et al., 2018; Liu
et al., 2017). However, other types of radiometric or geometric
features which can be extracted from a local neighborhood
(Gerke and Xiao, 2014; Weinmann and Weinmann, 2018)
have only rarely been involved, although, in the context of
classifying aerial imagery based on given true orthophotos and
the corresponding DSMs, it has recently been demonstrated that
the additional consideration of such hand-crafted radiometric
and geometric features on a per-pixel basis may lead to
improved classification results (Chen et al., 2018).

In addition to the aforementioned progress, the use of
hyperspectral data has also come into the focus of research
on environmental mapping over years (Plaza et al., 2009;
Camps-Valls et al., 2014), as such information e.g. allows
distinguishing different types of vegetation (Bradley et al.,
2018; Weinmann et al., 2018) and different materials (Ilehag et
al., 2017). This, in turn, can be helpful if the corresponding
geometric structure of the observed scene is similar. For
instance, the use of co-registered hyperspectral imagery and

LiDAR data for scene analysis has been proposed for tree
species classification (Puttonen et al., 2010) as well as for
civil engineering and urban planning applications (Brook et al.,
2010) and in terms of semantic scene interpretation (Weinmann
and Weinmann, 2018).

When using high-dimensional hyperspectral data, however, the
high degree of redundancy contained in these data typically
decreases the predictive accuracy of a classifier (Melgani and
Bruzzone, 2004; Bradley et al., 2018), so that approaches
for dimensionality reduction or band selection are commonly
involved. In this context, dimensionality reduction techniques
focus on deriving a new data representation based on fewer,
but potentially better features extracted from the given data
representation. For this purpose, standard approaches are
represented by variants of Principal Component Analysis
(PCA) (Licciardi et al., 2012) or Independent Component
Analysis (ICA) (Wang and Chang, 2006; Villa et al., 2011).
The use of such techniques typically allows a mapping of the
given space spanned by the complete set of hyperspectral bands
to a new space of lower dimensionality without a significant
lack of information. However, the new space is spanned by
meta-features, so that derived results hardly allow concluding
about relationships with respect to physical properties as e.g.
possible when considering the center wavelengths of involved
spectral bands. In contrast, band selection techniques focus on
retaining the most relevant and most informative spectral bands,
while discarding less relevant and/or redundant spectral bands
which, in turn, typically allows gaining predictive accuracy,
improving computational efficiency with respect to both time
and memory consumption, and retaining meaningful features
with respect to the given classification task (Saeys et al.,
2007; Guyon and Elisseeff, 2003).

3. METHODOLOGY

Our framework receives multi-modal data comprising
co-registered RGB color imagery, hyperspectral data and
LiDAR data as input and involves the major steps of feature
extraction and classification, leading to an output in the
form of respectively classified data. In the scope of this
paper, we focus on different types of hand-crafted features.
We define radiometric features on the basis of the given
RGB color imagery and transformations to potentially
better data representations (Section 3.1). Furthermore, we
involve radiometric features defined on the basis of the given
hyperspectral data and different encodings/transformations to
potentially better data representations (Section 3.2). Besides
the radiometric features, we also involve geometric features
extracted from the given LiDAR data (Section 3.3). Finally,
the different sets of radiometric and geometric features are
provided separately and in different combinations as input to a
Random Forest classifier (Section 3.4).

3.1 Definition of Radiometric Features on the Basis of
RGB Color Imagery

On the one hand, we straightforwardly use pixel-wise
radiometric features directly extracted from RGB color imagery
which is typically used for a diversity of applications.
On the other hand, we take into account that such RGB
color representations are less robust with respect to changes
in illumination, and we therefore also consider several
transformations of RGB color imagery to a potentially better
data representation. Each of these transformations results in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1899-2019 | © Authors 2019. CC BY 4.0 License.

 
1900



an image, where each pixel is characterized in a feature space
spanned by three radiometric features (Figure 1).

3.1.1 RGB Color Imagery: We define a feature set SRGB
which comprises the reflectance values corresponding to the red
(R), green (G), and blue (B) channels in the visible spectrum:

SRGB = {R,G,B} (1)

3.1.2 Transformation of RGB Color Imagery to
Chromaticity Values: We define a feature set SRGB,norm
which relies on color invariants in the form of normalized
colors also known as chromaticity values (Gevers and
Smeulders, 1999):

SRGB,norm =

{
R

R+G+B
,

G

R+G+B
,

B

R+G+B

}
(2)

Such color invariants are insensitive to surface orientation,
illumination direction and illumination intensity.

3.1.3 Transformation of RGB Color Imagery to c1c2c3
Space: We define a feature set Sc1c2c3 which relies on
photometric color invariants for matte, dull surfaces (Gevers
and Smeulders, 1999):

Sc1c2c3 =

{
arctan

(
R

max(G,B)

)
, arctan

(
G

max(R,B)

)
,

arctan

(
B

max(R,G)

)}
(3)

These color invariants are invariant to viewing direction, surface
orientation, illumination direction and illumination intensity
under the assumption of a dichromatic reflection model with
white illumination.

3.1.4 Transformation of RGB Color Imagery to l1l2l3
Space: We define a feature set Sl1l2l3 which relies on
photometric color invariants for both matte and shiny surfaces
(Gevers and Smeulders, 1999):

Sl1l2l3 =

{
(R−G)2

(R−G)2 + (R−B)2 + (G−B)2
,

(R−B)2

(R−G)2 + (R−B)2 + (G−B)2
,

(G−B)2

(R−G)2 + (R−B)2 + (G−B)2

}
(4)

Like the c1c2c3 color invariants, the l1l2l3 color invariants are
invariant to viewing direction, surface orientation, illumination
direction and illumination intensity under the assumption of
a dichromatic reflection model with white illumination. In
addition, the l1l2l3 color invariants are invariant to effects of
surface reflection in the form of specular highlights.

3.1.5 Transformation of RGB Color Imagery via
Comprehensive Color Image Normalization: We define
a feature set SCCIN which relies on Comprehensive Color
Image Normalization (CCIN) (Finlayson et al., 1998). This
approach is based on normalization procedures with respect
to either lighting geometry or illuminant color, which are
applied together and iteratively until convergence to a unique
comprehensively normalized image.

3.1.6 Transformation of RGB Color Imagery via
Gray-World Assumption: We define a feature set SGW
which relies on the gray-world (GW) hypothesis assuming that
the average reflectance of surfaces in the scene is achromatic
(Buchsbaum, 1980).

3.1.7 Transformation of RGB Color Imagery via
Edge-Based Color Constancy: We define a feature set
SEBCC which relies on Edge-Based Color Constancy (EBCC)
(van de Weijer et al., 2007). In this context, color constancy is
defined as the ability to measure colors of objects independent
of the color of the light source, and EBCC makes use of the
gray-edge hypothesis assuming that the average edge difference
in a scene is achromatic.

3.2 Definition of Radiometric Features on the Basis of
Hyperspectral Data

For the sake of comparison, we straightforwardly involve
radiometric features given with the original hyperspectral data.
In addition, we take into account that the spectral bands of
hyperspectral data are directly next to each other so that the
acquired reflectance values of neighboring spectral bands tend
to be strongly correlated and thus contain a high degree of
redundancy which, in turn, typically has a detrimental effect
on the classification results (Melgani and Bruzzone, 2004;
Keller et al., 2016; Bradley et al., 2018). Consequently, we
also involve several encodings/transformations of the given
hyperspectral data.

3.2.1 Hyperspectral Data: We define a feature set SHSI
which comprises the reflectance values corresponding to a
multitude of spectral bands, i.e. the reflectance values I across
NB spectral bands:

SHSI = {I1, . . . , INB} (5)

3.2.2 PCA-based Encoding of Hyperspectral Data: We
define a feature set SHSI,PCA by focusing on dimensionality
reduction via the standard Principal Component Analysis
(PCA). To reduce redundancy, the PCA uses an orthogonal
transformation transferring the given hyperspectral data to a
new space spanned by linearly uncorrelated variables which are
referred to as principal components (PCs). The PCs are sorted
with respect to the covered variability, so that the most relevant
information is preserved in the first few PCs. In our work,
we select the first few PCs covering 99.9% of the variability
of the given training data, and we assume that all information
preserved in the remaining PCs does not significantly contribute
to the variability of the given data and can hence be discarded.

3.2.3 CFS-based Band Selection from Hyperspectral
Data: We define a feature set SHSI,CFS by focusing on band
subset selection for which we apply Correlation-based Feature
Selection (CFS) (Hall, 1999), i.e. we aim at reducing
the redundancy preserved in the given hyperspectral data
by selecting a set of spectral bands (“features”) that seem
to be particularly relevant with respect to the considered
classification task. The CFS takes into account 1) the
correlation between spectral bands and classes to identify
relevant spectral bands and 2) the correlation among spectral
bands to identify and discard redundant spectral bands.
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c1c2c3 RGB RGB,norm l1l2l3 CCIN GW EBCC 

Figure 1. RGB color image and transformations derived via normalized colors, c1c2c3 space, l1l2l3 space, Comprehensive
Color Image Normalization (CCIN), Gray-World (GW) assumption and Edge-Based Color Constancy (EBCC).

3.2.4 Transformation of Hyperspectral Data to
Multispectral Sentinel-2-like Data: We define a feature
set SHSI→S2 with which we aim at reducing the redundancy
preserved in the given hyperspectral data by applying a
transformation to multispectral data, where the neighboring
spectral bands are well-separated by a sufficiently large
margin across wavelengths. More specifically, we apply a
transformation of the given hyperspectral data to multispectral
Sentinel-2-like data of the same spatial resolution (Weinmann
et al., 2018). In this context, the spectral bands of the
hyperspectral data that are within the individual spectral bands
defined for Sentinel-2 data are used to compute a weighted
mean of the respective reflectance values, where the weights are
determined via a linear interpolation based on the Sentinel-2
Spectral Response Functions (S2-SRFs) normalized to 1 as
shown in Figure 2. After performing this transformation, we
take into account that the atmospheric transmission is generally
low for the spectral bands B1, B9 and B10 of Sentinel-2
data. This can be attributed due to ozone, oxygen or water
vapor which strongly affect the atmospheric transmissivity at
certain wavelengths (Weinmann et al., 2018). Furthermore, we
account for the overlap of the spectral bands B8 and B8a, where
the former is much wider and can hence be considered as less
characteristic. Consequently, we discard the reflectance values
corresponding to the spectral bands B1, B8, B9 and B10, and
we accordingly focus on the remaining spectral bands.

3.3 Extraction of Geometric Features

From the LiDAR data, we extract geometric features which
describe the local surface structure around a 3D point X,
i.e. the spatial arrangement of 3D points within a local
neighborhood. We specify this local neighborhood for each 3D
point by applying spherical neighborhoods defined by one scale
parameter represented by the number k of nearest neighbors
to be considered. This neighborhood definition allows for a
variable radius and thus a variable absolute size which might
be preferable in case of strongly varying point density. Instead
of the straightforward solution of selecting an identical value
of the scale parameter k for each point of the LiDAR data, we
take into account that a suitable size of the local neighborhood
depends on the local 3D structure and the classes of interest
(Weinmann, 2016). Consequently, we focus on a data-driven
approach for optimal neighborhood size selection for which we
apply eigenentropy-based scale selection (Weinmann, 2016).
To determine the optimal size of the local neighborhood
for each individual 3D point, this approach relies on taking
different values k (here: k = 10, . . . , 100) and, for each k,
calculating the eigenentropy (i.e. the disorder of 3D points)
based on the eigenvalues of the respective 3D structure tensor.
Finally, the locally optimal neighborhood size is derived by
selecting the value for k that yields the minimum eigenentropy.

Based on the defined local neighborhoods, we derive the
3D structure tensor and its eigenvalues for each 3D point
of the LiDAR data. The eigenvalues, in turn, are used to
extract the geometric features of linearity, planarity, sphericity,
omnivariance, anisotropy, eigenentropy, sum of eigenvalues and
local surface variation (West et al., 2004; Pauly et al., 2003).
Further geometric features are defined by the height of X,
the radius of the local neighborhood, the local point density,
the verticality and the maximum difference and standard
deviation of the height values of those points within the local
neighborhood of X.

3.4 Supervised Classification

The defined sets of radiometric and geometric features are
considered separately and in different combinations. For each
case, the respective features are concatenated to a feature vector
and provided as input to a classifier.

For classification, we assume that only few training data
are available, which is realistic for practical applications
involving hyperspectral data. Consequently, we focus on a
standard supervised classification of given feature vectors. As
classifier, we use a Random Forest classifier (Breiman, 2001)
as representative of modern discriminative methods. Such
a classifier relies on strategically generating a set of weak
learners in the form of decision trees via bootstrap aggregating
(“bagging”) (Breiman, 1996), where a predefined number of
these weak learners are trained independently from each other
on subsets of the training data which are randomly drawn
with replacement. The random sampling results in randomly
different decision trees and thus in diversity in terms of
de-correlated hypotheses across the individual trees. Given the
trained classifier, the classification of an unseen feature vector
takes into account that each decision tree casts a vote for one of
the class labels and that the majority vote across the individual
votes represents a robust classification output.

The most important parameters of a Random Forest classifier
are the number NT of involved decision trees, the minimum
number NS of samples to allow a tree node to be split, the
number Na of active variables to be used for the test in each
tree node, and the maximum tree depth Dmax. To appropriately
specify these internal parameters of the classifier, we conduct a
grid search for NT on a suitable subspace, while the remaining
settings are defined following the recommendations of the
openCV implementation. Accordingly, a node is only split if
it is reached by at least NS = 20 training samples, while the
number Na of active variables for each test is set to Na =√
NF with NF being the number of features considered for the

respective case. The maximum tree depth is set to Dmax = 15.
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Figure 2. Visualization of the Sentinel-2 Spectral Response Functions (S2-SRFs), i.e. the measured spectral response
(SR) for each band of the Sentinel-2 MultiSpectral Instrument (S2-MSI).

4. EXPERIMENTAL RESULTS

In the following, we first describe the used dataset (Section 4.1).
Subsequently, we explain implementation details (Section 4.2)
and summarize the conducted experiments (Section 4.3).
Finally, we present the achieved results (Section 4.4).

4.1 Dataset

For performance evaluation, we use the MUUFL Gulfport
Hyperspectral and LiDAR Airborne Data Set (Gader et al.,
2013; Zare et al., 2016) comprising co-registered RGB,
hyperspectral and LiDAR data acquired in 2010 with an aerial
sensor platform from altitudes of about 3500-6700 ft over the
University of Southern Mississippi Gulf Park Campus in Long
Beach, Mississippi, USA. More specifically, the hyperspectral
data were acquired with an ITRES Compact Airborne
Spectrographic Imager (CASI-1500) delivering measurements
on 72 spectral bands. These spectral bands cover the
wavelength interval between 367.7 nm and 1043.4 nm (i.e.
the visible and near-infrared (VNIR) domain) with a spectral
sampling varying from 9.5 nm to 9.6 nm. For the analyses, it
has been taken into account that the first four and the last four of
these spectral bands correspond to parts of the electromagnetic
spectrum where the atmospheric transmission is generally low
due to effects arising from ozone, oxygen or water vapor in the
atmosphere. Consequently, the measurements corresponding
to those spectral bands have been discarded, and only the
information preserved in the remaining 64 spectral bands has
been released. As a complementary type of data, the LiDAR
data were acquired with an Optech Gemini Airborne Laser
Terrain Mapper (ALTM) relying on a laser with a wavelength
of 1064 nm. Both types of data have been co-registered and
transferred to a discrete image grid of 325× 220 pixels, where
each pixel corresponds to an area of 1m × 1m (i.e. all data are
given with a ground sampling distance of 1m). Accordingly,
the study area has a size of 7.15 ha.

Together with the co-registered RGB, hyperspectral and LiDAR
data, a reference labeling with respect to 11 semantic classes
as well as a further class for unlabeled data is provided (Du
and Zare, 2017) as shown in Figure 3. This reference labeling
addresses a variety of ground cover types (trees, grass, dirt,
sand, water, etc.) and structural scene elements (road, buildings,
sidewalk, curb, etc.).

4.2 Implementation

We implemented our framework in Matlab and used external
software packages for the CFS implementation (Zhao et al.,

2010) and for the Random Forest implementation (Liaw and
Wiener, 2002). All experiments are run on a standard laptop
computer (Intel Core i7-6820HK, 2.7GHz, 16GB RAM).

4.3 Experiments

For our experiments, we split the given dataset into disjoint sets
of 1) training examples used for training the classifier and 2)
test examples used for performance evaluation. In this context,
we discard all pixels labeled as C12 (“unlabeled”) and then
randomly select an identical number of 100 examples for each
of the 11 remaining classes as training data, while the 52,587
remaining examples are used as test data. The relatively small
number of training examples per class can be considered as
realistic for practical applications.

In our experiments, we provide the different sets of radiometric
and geometric features separately and in different combinations
as input to a Random Forest classifier. In particular, we focus on
the use of different sets of radiometric features with and without
additional 3D shape information. For each case, the classifier
is trained on the training data, while performance evaluation
is done on the test data. As evaluation metrics, we consider
the overall accuracy (OA), the κ-index (κ), the mean F1-score
across all classes (mF1) and the mean Intersection-over-Union
(mIoU).

4.4 Results

Using the defined sets of radiometric and geometric features
separately and in different combinations as input to the
Random Forest classifier, we achieve the classification results
summarized in Table 1 and visualized in Figure 4 for the
complete scene. The derived results vary from about 50% to
about 79% in OA, and they clearly indicate the potential of the
different feature sets as the basis for classification.

The derived results reveal that the use of RGB color information
or 3D shape information alone results in an OA of about
50-51% and is therefore not sufficient to achieve reasonable
classification results. Using transformations of RGB color
imagery to a potentially better data representation, a significant
gain of about 10-11% in OA may be achieved when using
chromaticity values (SRGB,norm), the c1c2c3 space (Sc1c2c3 ) or
Comprehensive Color Image Normalization (SCCIN) instead of
the original RGB color imagery (SRGB). Using the gray-world
hypothesis (SGW) or the gray-edge hypothesis (SEBCC) also
leads to improved classification results in comparison to the
use of the original RGB color imagery (SRGB), where the
improvement is about 3-4% in OA. Only the use of the l1l2l3
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Figure 3. RGB color image, the corresponding LiDAR data represented digital surface model (DSM) and the given
reference labeling with respect to 11 semantic classes as well as a further class for unlabeled data.

RGB,norm Reference RGB c1c2c3 l1l2l3 CCIN GW EBCC 

HSI,CFS HSI HSI,PCA HSIS2 3D RGB + 3D RGB,norm + 3D c1c2c3 + 3D 

GW + 3D l1l2l3 + 3D CCIN + 3D EBCC + 3D HSI + 3D HSI,PCA + 3D HSI,CFS + 3D (HSIS2) + 3D 

Figure 4. Reference labeling and the classification results achieved for different feature sets and their combination.

space (Sl1l2l3 ) does not seem to be appropriate for the given
classification task.

The use of hyperspectral data seems to be even more
beneficial. When using the original hyperspectral data (SHSI),
the improvement is about 18% in OA in comparison to the case
in which the original RGB color imagery is used. However,
the PCA-based encoding of the original hyperspectral data
(SHSI,PCA) yields a further improvement of about 7% in OA,
whereas the CFS-based band selection from hyperspectral data
(SHSI,CFS) yields an improvement of about 5% in OA in
comparison to the use of the original hyperspectral data (SHSI).
Interestingly, the use of multispectral Sentinel-2-like data on
the same spatial resolution (SHSI→S2) leads to similar results to
those achieved via the original hyperspectral data.

Finally, the consideration of geometric features in addition to
radiometric features yields a significant improvement. This
improvement is about 3-8% in OA in case of involved

radiometric data in the form of hyperspectral data and different
encodings/transformations, whereas the improvement is about
11-24% in OA in case of involved radiometric data in the form
of RGB color imagery and different transformations.

5. DISCUSSION

The finding that the use of RGB color information or 3D
shape information alone is not sufficient to achieve reasonable
classification results might seem obvious as some of the classes
exhibit similar RGB colors and/or a similar geometric behavior
when focusing on the local structure on the given raster with 1
point/m2 (Figure 3). The RGB color information allows for the
separation of classes with a different appearance, even if they
exhibit a similar geometric behavior, and thus allows separating
natural ground cover classes such as “mixed ground surface”
and “dirt and sand” from man-made ground cover classes such
as “road” and “sidewalk”. Using the different transformations
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Feature Set NF OA κ mF1 mIoU
SRGB 3 51.31 43.02 39.60 26.82

SRGB,norm 3 62.73 55.14 49.62 35.52
Sc1c2c3 3 61.94 54.27 51.06 36.70
Sl1l2l3 3 37.17 25.82 21.53 13.98
SCCIN 3 61.16 53.37 47.69 33.76
SGW 3 54.66 45.83 40.47 27.53
SEBCC 3 55.70 47.07 41.75 28.67
SHSI 64 68.96 61.04 54.82 40.36

SHSI,PCA 15 76.05 69.40 64.71 50.14
SHSI,CFS 11 74.31 67.77 63.83 48.32
SHSI→S2 7 67.80 59.78 54.29 39.99

S3D 14 49.76 36.94 26.69 18.44
SRGB + 3D 17 69.54 61.32 51.34 38.14

SRGB,norm + 3D 17 74.59 67.70 59.02 44.92
Sc1c2c3 + 3D 17 73.88 66.40 56.69 42.85
Sl1l2l3 + 3D 17 60.94 50.47 38.92 27.60
SCCIN + 3D 17 72.46 64.99 58.05 43.61
SGW + 3D 17 69.41 61.12 52.51 38.97
SEBCC + 3D 17 69.70 61.59 51.56 38.03
SHSI + 3D 78 74.88 68.36 61.91 48.57

SHSI,PCA + 3D 29 79.24 73.17 69.93 57.08
SHSI,CFS + 3D 25 79.04 73.24 65.87 51.65
S(HSI→S2) + 3D 21 75.34 68.52 60.23 46.82

Table 1. Number NF of involved features and achieved
classification results (OA, κ, mF1 and mIoU in %) when
using different feature sets as the basis for classification.

of RGB color imagery leads to a gain in OA in most cases
which, in turn, indicates that most of the applied techniques
relying on color invariants, normalization procedures or specific
assumptions about the color representation of a scene provide
a better basis for the considered classification task. This can
be attributed to the fact that RGB color representations are less
robust with respect to changes in illumination, whereas some of
the applied transformations even provide invariance properties
with respect to changes in viewing direction, object geometry
and illumination.

Using hyperspectral data seems to generally allow for a much
better differentiation of the defined classes due to the fact that
they contain reflectance information across numerous spectral
bands reaching from the visible domain to the near-infrared
domain. However, it can be observed that involving techniques
for dimensionality reduction (e.g. PCA) or feature selection
(e.g. CFS) yields a significant improvement of about 5-7%
in OA which, in turn, indicates that reducing the redundancy
contained in the reflectance values of neighboring spectral
bands has a beneficial impact on classification.

Interestingly, the use of multispectral Sentinel-2-like data on
the same resolution leads to classification results of almost the
same quality as given for the use of the original hyperspectral
data. This indicates that multispectral Sentinel-2-like data
already provide a good source of information for the considered
classification task involving a variety of ground cover types and
structural scene elements. Such an effect has recently also been
reported for land cover and land use classification (Weinmann
et al., 2018). This is of particular interest as multispectral
Sentinel-2 data can currently be acquired with lower spatial
resolution, but with short revisit times which, in turn, allows for
multitemporal analyses taking into account seasonal changes,
growth cycles or other dynamic processes.

In contrast, the 3D shape information does not allow separating
classes with a similar geometric behavior as given for the
classes “mostly-grass ground surface”, “mixed ground surface”,
“dirt and sand”, “road”, “sidewalk” and “water”, yet the 3D

shape information allows the differentiation of classes with
different geometric characteristics which, in particular, leads to
a much better recognition of the class “buildings” (Figure 4).

The significant improvement obtained when using a
combination of radiometric and geometric features indicates
the synergetic effect of using complementary types of features.
While the radiometric features allow reasoning about materials,
the geometric features allow reasoning about the shape of
objects. The significant gain in OA, κ, mF1 and mIoU (Table 1)
indicates both a better overall performance and a significantly
improved recognition of instances across all classes.

6. CONCLUSIONS

In this paper, we have addressed the semantic interpretation of
urban environments on the basis of multi-modal data acquired
from aerial sensor platforms. In this context, we have
assessed the potential of RGB color imagery, hyperspectral
data and LiDAR data as well as a variety of potentially
better data representations derived from these. In this regard,
we have transformed the RGB color imagery via techniques
relying on color invariants, normalization procedures or
specific assumptions about the color representation of a scene.
For the hyperspectral data, we have taken into account
specific encodings/transformations derived via dimensionality
reduction or band selection techniques which have proven
beneficial in numerous investigations. Furthermore, we
have transformed the hyperspectral data to high-resolution
multispectral Sentinel-2-like data. Using different sets
of radiometric and/or geometric features separately and
in different combinations as input to a Random Forest
classifier, we have demonstrated that particularly the use
of shape information in combination with hyperspectral
information or respective data encodings/transformations leads
to classification results of rather good quality, even for a
challenging scene acquired with a low spatial resolution of
1 point/m2. However, the results have also revealed further
interesting insights. On the one hand, commonly involved
combinations of radiometric and geometric features such as
the combination of RGB color imagery and 3D data should
be adapted by a transformation of the considered color space.
On the other hand, the use of the original high-dimensional
hyperspectral data should be avoided, because different
encodings/transformations of these lead to classification results
of similar or even better quality.

In future work, we plan to address the fact that neighboring
data points tend to be strongly correlated, i.e. class labels
typically change only at the boundaries of objects, while most
of the data points within a local neighborhood belong to the
same class. Accordingly, a class change should be unlikely
for neighboring data points and rather be related to a change
of the respective features. To achieve a smoother labeling, we
plan to use either smoothing techniques or spatial regularization
techniques (Schindler, 2012; Landrieu et al., 2017).
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