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ABSTRACT: 

 

The technology of UAV (Unmanned Aerial Vehicles) is rapidly improving and UAV-integrated sensors have kept up with it, 

providing more efficient and effective solutions. One of the most sought-after characteristics of on-board sensors is the low costing 

associated to good quality of the collected data. This paper proposes a very low-cost multiband sensor developed on a Raspberry 

device and two Raspberry Pi 3 cameras that can be used in photogrammetry from drone applications. The UAV-integrated 

radiometric sensor and its performance were tested in in two villages of South-west Niger for the detection of temporary surface 

water bodies (or Ephemeral water bodies): zones of seasonal stagnant water within villages threatening the viability and people’s 

health. The Raspberry Pi 3 cameras employed were a regular RGB Pi camera 2 (Red, Green, Blue) and a NoIR Pi 3 camera v2 

(regular RGB without IR filter) with 8MPX resolution. The cameras were geometrically calibrated and radiometrically tested before 

the survey in the field. The results of the photogrammetry elaborations were 4 orthophotos (a RGB and NoIRGB orthophoto for each 

village). The Normalized Difference Water Index (NDWI) was calculated. The index allowed the localization and the contouring of 

the temporary surface water bodies present in the villages. The data were checked against the data collected with a Sony (ILCE-

5100). Very high correspondence between the different data was detected. Raspberry-based sensors demonstrated to be a valid tool 

for the data collection in critical areas.  
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1. INTRODUCTION 

The usage of Unmanned Aerial Vehicles (UAVs) has gaining 

approval in scientific community for different applications 

related to the acquisition of information. UAVs have become 

common tools in a wide range of applications (D’Oleire-

Oltmanns et al., 2012).  

The UAVs advantages UAVs are unquestionable: they can fly at 

low altitudes and reach remote areas and thet can be equipped 

with a multitude of sensors (Giordan et al., 2017), such as 

optical and hyperspectral camera, Laser, SAR, IMU, GPS, etc 

(D’Oleire-Oltmanns et al., 2012; Hruska et al., 2012; Skoglar et 

al., 2012); These characteristics make UAVs reliable data 

collectors, especially in areas where dangers to personnel exist, 

as an example in post-hazard areas in which structures have 

collapsed or explosions have occurred. Furthermore, UAVs can 

capture very high resolution imagery and oblique imagery 

(Aicardi et al., 2016). Nowadays UAV technologies are 

consolidate in several fields. In agriculture are used for 

precision farming, to assess the phytosanitary conditions of 

crops and the phenology of cultures (Candiago et al., 2015). 

Similarly, in forestry UAVs are employed in forest health 

assessment, but also in volumes estimations, forest-fires 

monitoring and trees classifications (Aicardi et al., 2016; Pla et 

al., 2017; Banu et al., 2016). Environment monitoring activities 

benefit of UAVs too, for example in landslides and erosion 

monitoring (D’Oleire-Oltmanns et al., 2012; Piras et al., 2017), 

water assessment, coastline and volcano monitoring (Gonçalves 

and Henriques, 2015), or natural resources and infrastructure 

documentations (Angeli et al., 2019; Giordan et al., 2017). In 

disciplines like archaeology and architecture UAVs are 

employed in 3D surveying and mapping (Chiabrando et al., 

2010). Thanks to their ability of acquire data regardless the 

criticism of study area, UAVs are widely employed in rescues, 

post-hazard monitoring (Calantropio et al., 2018) and 

emergency activities (Nex and Remondino, 2014).  

The spreading application of UAVs is attributable to the 

versatility of the technology ant the possibility of being 

equipped of many different sensors with the limit of the size and 

the weight. Beside the fundamental navigation sensors, the most 

common sensors are cameras, multi spectral sensors (Baluja et 

al., 2012; Berni et al., 2009.; Kelcey and Lucieer, 2012) and 

Lidar (Chisholm et al., 2013; Tulldahl et al., 2015; Wallace et 

al., 2012). Regarding the radiometric information, using a 

simple near InfraRed and visible data grants the possibility to 

apply several radiometric index, performing meaningful 

analysis in most of the applications. One of the most sought-

after characteristics of on-board sensors are the low-costing 

(Aden et al., 2014; Kingston and Beard, 2004), the 

customizability, and the lightweight. In the last few years, 

several low-cost multiband sensors have entered into the 

market, providing to UAV-users several solutions. Beside these, 

inexpensive alternatives to commercial radiometric sensors 

exist. Particularly, some devices can be self-assembled and 

programmed, such as Raspberry device. This contribution 

analyses a RGBNoIR camera based on Raspberry Pi 3 system 
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for photogrammetry from UAV purposes. The tests and the 

calibrations carried on in laboratory and in the field are 

presented.  

 

2. THE RASPBERRY SENSOR 

 

Raspberry Pi 3 is a personal computer board with Linux 

operating system installed on it. Users must integrate any 

hardware, including screen and mouse. Raspberry Pi can be 

applied to electronic structures and programming network work 

(Jindarat and Wuttidittachotti, 2015). It is cheap to encourage 

young people for learning programming and experimenting 

(Agrawal and Singhal, 2015). Although initially developed to 

increase interest in software engineering, it has soon became 

accepted as a programmable control unit in many different 

applications (Sobota et al., 2013). Raspberry Pi can connect to 

numerous external accessories (Foundation Raspberry, 2019), 

including cameras. On the market are available camera modules 

for Raspberry, among others, there are sensors that are able to 

collect InfraRed light. The Raspberry device analysed in this 

contribution (Figure 1) is composed by 1) a central Raspberry 

Pi 3 board; 2) a 3.5 inches touch screen; 3) a multiplexer chip 

4) a Raspberry Pi 3 V.2 camera 5) a Raspberry Pi 3 V.2 NoIR 

camera 6) a 5v power bank. Table 1 describes the main 

characteristic of the components. The size of the device is 

85mmx56mmx32mm, the final weight (battery included) 300 

grams and costed around 100€. A Python code was specifically 

created using Raspberry Pi camera library to shoot and save 

pictures automatically from both cameras at a given frequency. 

 

Component Description 

Central Raspberry Pi 

board 
Raspberry PI 3 Model B+ 

3.5 inches touch-screen 
Standard touchscreen connected 

(and powered) to the Central board  

Multiplexer chip  

Component that allows the use of 

two cameras on the same Raspberry 

board 

Raspberry Pi 3 V2  
8MPx camera, RGB, 3g, Sony 

IMX219 

Raspberry Pi 3 V2 NoIR  
8MPx camera, NoIR-GB, 3g, Sony 

IMX219 

Table 1. Components of the Raspberry-based device 

The two cameras did not work simultaneously, but with 0,1 

second delay between each other, which was considered 

negligible for our applications. Moreover, to store the pictures 

taken at 1Hz frequency, the resolution of the data was reduced 

to 5 MP. The Raspberry Pi 3 cameras v2 employed were a 

regular RGB Pi 3 camera v2 (Red, Green, Blue) and a NoIR Pi 

3 camera v2 (NoIR-RGB). Camera calibration is fundamental 

for any metric reconstruction from images (Nex and 

Remondino, 2014). Thus, before the application in the field, the 

NoIR camera module was tested in laboratory. Pagnutti et al. 

(2017) realized an in-depth study on the Raspberry Pi 3 v2 

RGB camera. Considering the already existing study regarding 

the RGB Raspberry sensor, this contribution is focused on the 

NoIR Camera Module calibration. Were performed a geometric 

calibration of the sensor. The dark frame was assessed and 

radiometric tests was realized.  

Once the tested in laboratory, the Raspberry device was used in 

the field during a UAV campaign in Niger. 

 

3. GEOMETRIC CALIBRATION 

 

The sensor was geometrically calibrated using a known size 

chessboard. 20 pictures were taken from different angulations. 

The distortion of the camera was then estimated using 

MATLAB camera calibration tool (MATLAB, Computer 

Vision ToolboxTM). The results are shown in        Table 2. 

Radial distortion of the lens is expressed by K1 and K2 

coefficients (MATLAB, Computer Vision ToolboxTM). The 

radial distortion coefficient k3 is 0. Tangential distortion of the 

lens is expressed as p1 and p2 coefficients (MATLAB, 

Computer Vision ToolboxTM). The estimated focal length is 

expressed in millimetres. The principal point (i.e. the optical 

centre of the camera) is in pixels. The mean reprojection error is 

an extrinsic parameter that represent the average Euclidean 

distance between reprojected and detected points and is 

expressed in pixel (MATLAB, Computer Vision ToolboxTM). 

Table 2, for each parameter show the σ (standard error) value on 

x and y components that represents the uncertainty of the 

estimated parameters. The errors have the same unit of measure 

on the corresponding parameter and are expressed for both x 

and y components. σ can be used to calculate the confidence 

intervals. 

 

 
x y x-error y-error 

Radial distortion 0.1914 -0.4324 0.0093 0.0463 

Tangential distortion -0.0026 -0.0113 0.0014 0.0015 

Estimated focal length [mm] 2.28 2.29 0.0044 0.0039 

Principal point [pixel] 1244 969 6.301 5.991 

Mean reprojection error 

[pixel] 
0.663 

       Table 2. Geometric calibration results 

 

4. RADIOMETRIC AND SPECTRAL ANALYSIS 

4.1 Dark frame knowledge  

The dark frame assessment was performed in constant 

conditions of temperature (indoor, 21°C). The sensor was 

covered with a black stopper and 50 pictures were captured ad 

different ISO (100, 200, 300, 400, 500 and 600) and constant 

exposure of 5ms. It was notice that the first 4 pictures acquired 

were overexposed, thus discarded. The DNs of each band were 

spatially averaged.  

Figure 1. Raspberry-based device used in this study 
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The results are three matrices (NoIR channel dark frame; green 

channel dark frame; blue channel dark frame) for each ISO 

setting. As expected, dark frame is ISO dependant: its values 

increase for higher ISO (Figure 3). Table 3 reports the 

histogram of DN distributions for the dark frame assessment for  

ISO 100 and ISO 600. 

4.2 Spectral response  

Pagnutti et al. (2017) realize a study on the Raspberry Pi 3 v2 

camera identifying the spectral resolution of its bands (Figure 

2). A far as we know, there are no studies on the spectral 

response of the Raspberry NoIR. The producer does not reveal 

information in its regard, but that the NoIR camera is a 

“standard” Raspberry PI camera without the IR filter 

(RaspberryFoundation, 2019). This means that the camera is 

able to detect InfraRed light, but is unknown which part of the 

electromagnetic spectrum.  

 

ISO Band 
Min 

DN 

Max 

DN 

Mean 

DN 

Median 

DN 
STDev 

100 

1 0.00 32.60 0.34 0.20 0.13 

2 0.70 35.90 1.81 1.60 0.17 

3 0.00 32.40 0.25 0.00 0.14 

200 

1 0.00 30.80 0.01 0.00 0.04 

2 0.00 31.00 0.08 0.00 0.05 

3 0.00 30.00 0.01 0.00 0.04 

300 

1 0.00 19.60 0.03 0.00 0.06 

2 0.00 19.30 0.04 0.00 0.06 

3 0.00 19.90 0.03 0.00 0.05 

400 

1 0.00 43.60 0.24 0.10 0.09 

2 0.00 25.00 0.24 0.20 0.08 

3 0.00 22.60 0.23 0.15 0.08 

500 

1 0.00 50.00 0.58 0.40 0.14 

2 0.00 33.40 0.46 0.40 0.10 

3 0.00 35.20 0.43 0.30 0.11 

600 

1 0.00 45.80 0.66 0.50 0.15 

2 0.00 32.90 0.60 0.50 0.11 

3 0.00 36.80 0.61 0.50 0.12 

Table 3. Dark frame assessment per band for different ISO 

settings. 

A clue regarding the radiometric resolution of the sensor derives 

from the work of Hobbs et al. (Hobbs et al., 2016). They created 

a spectrometer using a Raspberry Pi NoIR and it is sensible 

between 415 nm and 775 nm. This includes part of the Near-

InfraRed spectrum. In order to better define the spectral 

resolution of the device, NoIR data were checked against the 

one of a hyperspectral camera, Sonap Rikola. 10 pictures of a 

calibration target and a plant were captured with the Raspberry 

and the hyperspectral sensor at the same time (Figure 4).  

ISO 100 

Band 1 

Band 2 

Band 3 

ISO 600 

Band1 

Band 2 

Band 3 

Figure 3. Histograms of distribution of dark frame assessment at 

100 ISO (up) and 600 ISO (down) per band Figure 2. Raspberry Pi camera spectral response. Source: 

Pagnutti et al.,2017 
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The data were spatially averaged and dark frame subtracted. The 

hyperspectral camera is not able to detect values below 500nm 

(blue) of the spectrum, consequentially the blue band of the 

Raspberry was not taken into consideration. 13 bands between 

640 nm and 900 nm were acquired (amplitude of bands of 

20nm). The spectral signatures of sample pixels from the scene 

were extracted. The reflectance values of the green channel of 

Raspberry (i.e. 550mn) were subtracted to the one of the 

hyperspectral, showing a constant difference for the sample 

pixels (Table 4).  

Raspberry NoIR and hyperspectral reflectance 

difference on Green band (550nm) 

Dark Grey White Light Grey Black Vegetation 

0.24 0.26 0.25 0.04 0.25 

Table 4. Distances between Raspberry reflectance values of 

green band and Hyperspectral ones. The data are referred to 

sample pixels of the calibration panels. 

Figure 4. Picture of the calibration scene taken by the NoIR 

camera. On the left the calibration target composed by four 

panels (white, light grey, dark grey and black). On the right, 

side on the picture a plant. At the bottom of the picture is 

visible the irradiance sensor of the hyperspectral. 

The values of the NoIR channel of Raspberry were subtracted to 

the ones of each hyperspectral band between the 640nm and 

900nm. Then the differences were compared to evaluate 

constant distances between the spectral values. Apparently, 

there is no correlations with any band of the hyperspectral. In 

both Green and NoIR band, the reflectance values of black 

panel are very close. The remaining panels show small 

differences for the bands of 680nm and 700nm, although the 

values on the white panel are very close. There are no 

significant results from the comparison. Table 5 shows the 

comparison between the spectral signatures (Figure 5). 

 

Bands Dark Grey White Light Grey Black Vegetation 

640nm 0.25 0.03 0.25 0.07 0.46 

660nm 0.29 0.17 0.29 0.08 0.49 

680nm 0.32 0.17 0.31 0.09 0.47 

700nm 0.29 0.04 0.31 0.07 0.28 

720nm 0.30 0.09 0.31 0.07 0.23 

740nm 0.28 0.05 0.30 0.06 0.18 

760nm 0.33 0.24 0.35 0.08 0.26 

780nm 0.30 0.12 0.32 0.07 0.21 

800nm 0.32 0.15 0.31 0.07 0.22 

820nm 0.34 0.24 0.33 0.07 0.26 

840nm 0.33 0.24 0.35 0.08 0.26 

860nm 0.35 0.27 0.36 0.08 0.28 

880nm 0.35 0.29 0.34 0.07 0.30 

Table 5. Difference between the Band NoIR of the raspberry 

NoIR and the one of the hyperspectral bands between 640nm 

and 880nm ion the 5 sample points selected for the comparison. 

 

 

 

 

 
Figure 5. Plotting of spectral signatures on the SONAP (grey 

dots) and the Raspberry NoIR (orange squares). The wavelength 

is on the x-axis, while the reflectance (0-1 scale) on the y-axis. 
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5. SENSOR APPLICATION IN THE FIELD 

The sensor was used to acquire data in the field in Niger (Figure 

6), within the framework of ANADIA 2 project1.The project 

needed high resolution imagery of two villages along the Sirba 

River (South-west Niger) to detect water stagnations. 

  

 
Figure 6: Area of the study. The villages of Tourey and Larba 

Birno both lay on the left side of the Sirba. 

Thus, it was organized a UAV campaign to collect high 

resolution RGB imagery and near infrared information. The 

Drone used was property and self-constructed by the local 

enterprise Drone Africa Service. It was used a fixed-wing UAV 

with two cameras: the Raspberry-based device and a 

commercial Sony camera (ILCE-5100). This camera is an RGB 

sensor and it has 24.3 MP resolution. Only one camera per 

flight was mounted on the UAV. This was done to avoid over 

weight and because the final results need to have comparable 

spatial resolution (i.e. different heights of flight). The project 

required spatial resolution below 10 cm to obtain significant 

information regarding the temporary surface water bodies. The 

height of Raspberry cameras flight was 120 meter above the 

ground and the one with the Sony was at 270 m. 300 hectares 

were surveyed with each camera. Table 6 summarizes the 

characteristic of the flights. A RTK survey in master-rover 

                                                                 
1 ANADIA 2 (Adaptation to climate change, disaster prevention 

and agricultural development for food security) is a project 

founded by the Italian Agency for Development Cooperation. It 

aims to create a flood early warning system and nine flood risk 

reduction plans at village level of which 4 in the Sirba river 

basin. The risk reduction plans take into consideration, beside 

the flood risk, also the health risk provoked by the presence 

TSWB within the village that can be hotspot of insects and 

threat human health. 

 

modality was carried out with two GNSS receivers to support 

the geo-reference of the models.  

Figure 7: Detail of the surveyed areas. On the left Larba Birno, 

and on the right Tourey. 

 

The correct coordinates were estimated with PPP (Precise Point 

Positioning) technique since the surveyed area is characterized 

by lack of geodetic infrastructure. The PPP-estimation had 6 cm 

precisions. The up component, was converted from ellipsoidal 

heights to orthometric heights using EGM08 model (Pavlis et 

al., 2012). In Tourey were measured 20 points, while in Larba 

Birno were measured 16 points. The PPP-estimation had 6 cm 

average precision. The Raspberry device collected a total 

amount of 3397 pictures. The pictures were dark-subtracted and 

calibrated on the white markers considered as maximum 

reflectance, in this way the radiometric information of the two 

cameras was correlated. Then, they were geometrically 

calibrated. The bands of the Raspberry RGB and Raspberry 

NoIR were aligned using QGIS software (version 2.18) based 

on the points measured in RTK. 

 

Characteristics Sony ILCE-5100 Raspberry  

ISO settings 1/125 1/100  

Shutter frequency 
Automatically set by 

the navigation software 
1 Hz 

Lateral overlap 70% 70% 

Longitudinal overlap 60% 60% 

Number of flight to 

cover each village 
1 2 

Average duration of 

flight 
30 minutes 30 minutes 

Height of flight from 

the ground  
270 m  120 m 

GSD 2.5 cm/pixel 6 cm/pixel 

Table 6. Main characteristics of the flights. 

A digital photogrammetry software (Photoscan, version 1.4.4) 

was used to process to generate four orthophotos (a NoIRGB 

and RGB orthophoto for each village) from the raspberry 

device. Table 7 and Table 8 report the RMSE values of the 

alignments. 

 

 

Errors 

(cm) 

Larba Birno Tourey 

Sony 

ILCE 

RGB 

Raspberry 

RGNoIR 

Sony 

ILCE 

RGB 

Raspberry 

RGNoIR 

X error-

easting 
1.83 5.88 3.75 5.41 

Y error-

northing 
6.89 7.21 3.81 6.54 

Z error-

altitude 
4.84 4.17 7.90 3.03 

Total error 8.62 10.20 5.67 9.02 

Table 7. RMSE value of the control points in centimetres 

 

6. FIELD RESULTS ELABORATION AND 

VALIDATION 

The goal of the field application was to detect the presence of 

stagnant water in the villages, thus an index based on the 

radiometric information that allows the identification of water 

bodies was used. The Normalized Difference Water Index 

(NDWI) by McFeeters detects the presence of water by 
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subtracting the NIR information to the green one (equation 1) 

(McFeeters, 2013).  

 

                    NDWI = (Green-NIR)/(Green+NIR)              (1) 

 

The pixel were distributed in classes based on the index value 

(Table 9). Only class 6 and 7 were considered as water bodies. 

A further analysis was realized on the raspberry-based data. 

 

 

Errors 

(cm) 

Larba Birno Tourey 

Sony 

ILCE 

RGB 

Raspberry 

RGNoIR 

Sony 

ILCE 

RGB 

Raspberry 

RGNoIR 

X error-

easting 
4.80 4.21 3.52 5.40 

Y error-

northing 
7.48 4.75 3.77 5.05 

Z error-

altitude 
4.66 2.64 3.79 2.93 

Total 

error 
10.03 6.88 6.40 7.95 

Table 8. RMSE value of the check points in centimetres 

 

Class NDWI interval 
Percentage of 

cover in Tourey  

Percentage of 

cover in Larba  

1 -1 – -0.112 1.66 4.35 

2 -0.112 – -0.069 8.06 20.59 

3 -0.069 – -0.026 28.15 35.68 

4 -0.026 – 0.005 41.09 31.68 

5 0.005 – 0.025 11.17 6.25 

6 0.025 – 0.030 7.16 0.45 

7 0.030 – 1 2.70 0.89 

Table 9. Pixels distribution (percentage) of the NDWI raster 

within the identified classification. Column one shows the name 

of the class, column two the interval of values describing the 

class (low value ≤ DN < higher value), in column three are 

reported the percentage of cover of each class 

The results obtained from the NDWI were visually check 

against the data collected with the SONY ILCE camera. 

The index allowed the localization and the contouring of the 

temporary surface water bodies present in the villages, detecting 

also high turbidity water bodies.  Figure show and example of 

Temporary surface water body detected using the NoIR channel.  

 

 

7. CONCLUSION 

The findings of this study suggest that Raspberry Pi-based 

sensors are appealing and affordable multiband (NoIR-RGB) 

alternatives to commercial radiometric sensors. The sensor 

demonstrates to be able to provide good results and being a 

valid tool for the data collection in critical environment. In this 

particular case, it did not overheated, despite the high 

temperatures. In this application, the drone did not power the 

sensor and there was no interaction between the UAV 

navigation system and the sensor system. The possibility of 

coding and personally designing the device adds further 

potentialities, as example the connection of the sensor with the 

UAV system. The coding broaden the application prospects of 

this low-cost sensor, making it adaptable to several unmanned 

vehicles. Nevertheless, the unknown radiometric resolution is a 

very strong limit to the employment of the sensor in scientific 

fields. From this first study and from the literature, we can 

presume that the NoIR camera is sensible to the InfraRed light, 

most probably to the Near InfraRed light. 

This is partially confirmed by the validation of the data 

collected in the field, which provide reasonable results. 

However, the sensor was not spectral calibrated and the 

validation method proposed in this paper does not lead to 

rigorous calibration. The results of this study therefore need to 

be interpreted with caution. In this particular application, it was 

not necessary a multi-temporal analysis, thus the congruence of 

data within the Raspberry cameras was considered sufficient for 

our goal. In case of multi-temporal analysis, the same 

radiometric tests would probably lead to erroneous results 

(unless data are collected in same environment conditions). The 

impossibility of compare data of different time makes the sensor 

less effective.  
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Figure 8. Example of temporary surface water bodies from the 

village of Larba Birno. Above: the Sony ILCE RGB information at 3 

cm of resolution. Below: the NDWI data, which derives from the 

NoIR camera acquisition the resolution is 6cm. 

Beside the radiometric- and spectral-related doubts, many other 

variables should be investigated. Different pre-set shoot 

modalities (that were not used in this work) exist in Raspberry 

Pi 2 cameras coding libraries, which should be take into account 

in future studies. Additional work can be done to improve the 

Python code to automatically remove noise (dark frame) and 

geometrically calibrate the pictures. Moreover, the Pi NoIR 

camera is match with a blue filter by the constructor that can be 

apply on the optic. Several questions remain to be answered, 

but surely, the main one is what is the spectral resolution of the 

Raspberry NoIR camera?  Considerably more work will need to 

be done to determine sensibility-range of the sensor. In this 

direction, more research is planned to absolute calibrate the 

sensor. 
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