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ABSTRACT:

LiDAR systems are frequently used for driver assistance systems. The minimal distance to other objects and the exact pose of a
vehicle is important for ego movement prediction. Therefore, in this work, we extract the poses of vehicles from LiDAR point
clouds. To this end, we measure them with LiDAR, segment the vehicle points and extract the pose. Further, we analyze the
influence of LiDAR resolutions on the pose extraction by active shape models (ASM) and by the center of bounding boxes combined
with the principal component analysis (BC-PCA).

1. INTRODUCTION

The accurate prediction of traffic participant behavior is essen-
tial for avoiding accidents. Driver assistance systems and es-
pecially, autonomous driving use a variety of sensors like cam-
eras and LiDAR sensors to detect traffic participants and predict
their behavior. The prediction strongly depends on the observa-
tion accuracy and variance. Nowadays, more and more LiDAR
systems are used for driver assistance, because of their high dis-
tance accuracy. The 3D point information is used to improve the
camera based object detection. An object enclosing bounding
box could be used for deriving a precise pose for the object. We
analyze the accuracy of pose estimation approaches for these
objects by comparing the extracted poses of vehicles to highly
accurate total station references. We validate the pose accuracy
to the effect of distance, viewing angle, different resolutions and
vehicle shapes. Therefore, we use a Velodyne HDL-64E S2 and
Velodyne VLP-16 scanner, with 64 and 16 vertical beams and a
vertical resolution of 0.4◦and 2◦. The vehicle shapes have dif-
ferent effects on the detected bounding boxes, due to the count
of measured points and occlusion. We analyze the impact of
vehicle shapes on the bounding box by comparing the pose ac-
curacy of a sedan type car to a van. In addition, we compare the
accuracy of bounding box estimation approaches by BC-PCA
and ASMs. An ASM (Cootes et al., 2000) estimates the posi-
tion by the geometric center of a deformable vehicle model and
uses its orientation. The BC-PCA uses the center of the enclos-
ing bounding box for the position and the main component of
the PCA as orientation. In more detail, we extract the vehicle
points from the scans by using a region of interest and remov-
ing the ground by subtracting the ground plane estimated via
random sampling consensus (RANSAC). The remaining points
are clustered to vehicle points by region growing. For each ve-
hicle, two poses are estimated by bounding box centers and ori-
entations derived from BC-PCA and ASM, see Figure 1. To
overcome the restriction of the region of interest and plane es-
timation in future works we present a neural network. We used
the proposed segmentation technique to generate 200.000 train-
ing samples from 6 different junctions in the city of Hannover,
Germany. For the accuracy analysis, we scan two vehicles with
two LiDARs simultaneously from 24 different poses and build
a global coordinate frame, where the relative poses of vehicles,

(a) Intenity/Depth image of Velodyne HDL-64E S2

(b) Label image: vehicle points are marked (white)

(c) Segmentation by region growing

(d) ASMs (blue mesh), vehicle points (red) and point cloud
(gray)

Figure 1. Data processing: from intensity/depth image via
label image to ASM

scanners and total stations are known. The paper is structured
as follows: first, section 2 gives an overview over object de-
tection approaches. Secondly, we explain our pose extraction
process in section 3 and our experiment in section 4, before we
present the accuracy validation in section 5. Finally, we end
with a conclusion in section 6.

2. RELATED WORK

In this section we give an overview of related work for ob-
ject detection in LiDAR point clouds by use of objects seg-
mentation and object pose estimation approaches. Some point
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cloud segmentation approaches remove the ground plane by lo-
cal plane estimation and cluster the remaining points by occu-
pancy grid segmentation (Himmelsbach et al., 2010; Douillard
et al., 2011). Other approaches calculate the normal vector
for each point and use region growing (Rabbani et al., 2006)
or graph cut (Moosmann et al., 2009) methods. All of these
geometric feature based segmentation approaches need certain
thresholds which must be tuned for optimal results. However,
these results create a database for the training of neural net-
works (NN) (Li et al., 2016; Zhou , Tuzel; Qi et al., 2017).
NN segmentation for object detection approaches often com-
bine LiDAR data with camera images (Qi et al., 2018; Barea et
al., 2018; Xu et al., 2018; He , Soatto). After the objects are
segmented, their pose can be estimated by a bounding box. He
(Soatto) and Chen et al. (2018) estimate the bounding box di-
rectly using a NN. Nevertheless, a part of the bounding box is
often occluded from the object itself. The use of ASMs (Co-
enen et al., 2018; Ferryman et al., 1998; Menze et al., 2015; Zia
et al., 2011, 2015) is a suitable approach to overcome the occlu-
sion issue and can improve the accuracy of a vehicle bounding
box. Many approaches validate the algorithm with a public ref-
erence data set based on camera labeled images. Up to now and
to the best of our knowledge, there is no validation of LiDAR
detected vehicle poses by a reference with superior accuracy.
Our work addresses this validation gap by determining the ac-
curacy of the pose estimation by comparing pose detections to
a total station.

3. DATA PROCESSING

First we pre-process the recorded point clouds from the Velo-
dyne HDL-64 and VLP-16 to intensity/depth images with a res-
olution of 64×1500 and 16×1500 pixels, respectively, see Fig-
ure 1 (a). The information of each beam is stored in a row.
We label the pixels in the images as vehicle pixels and segment
single vehicles. Finally, we estimate their poses.

3.1 Classification

We use two approaches to classify the scan points and corre-
sponding pixels of the intensity/depth images as vehicle points.
On the one hand, we use information about lanes to filter back-
ground pixels and filter the road points/pixels by ground sub-
traction. On the other hand, we use a neural network to label ve-
hicle points without information about lanes and ground plane.
For the lane and ground filtering all points of the different per-
spectives are transformed into the frame of the total station to
use a manually determined lane for point filtering. We approx-
imate a lane by picking points along a line through the vehicle
positions. This line represents a middle axis of a lane with the
width of 3 m. We estimate the ground plane of this lane by
RANSAC with a 10 cm threshold. All points within the lane
and 10 cm above this plane are marked as vehicle points, see
figure 1 (b). We trained the neural network for vehicle label-
ing to overcome the dependence on lane accurate maps during
the labelling process. The network is inspired by the VGG16
(Simonyan , Zisserman) structure. For a pixel-wise classifica-
tion we add deconvolution layers, three with a rectified linear
unit activation function and one final deconvolution with a lin-
ear activation function. The training data is generated by label
measurements of six junctions in Hannover via the mentioned
lane and ground filtering. In addition we use the scan and label
data provided by the KITTI benchmark (Geiger et al., 2013).

3.2 Segmentation

We use the pixel information of the intensity/depth images, as
well as the 3D-coordinates to assign points/pixels to vehicles.
A region growing algorithm uses a 5×5 pixel neighborhood to
overcome measurements errors. Pixels which are marked as ve-
hicle points are added to a set of seed points. One seed point
is selected randomly and each seed point within its pixel neigh-
bourhood with a distance below 1 m is added to its region and
removed from the seed point set. The region growing will stop
if there are no more seed points, see Figure 1 (c).

3.3 Pose detection

The main focus of the work is an accurate pose estimation of
detected vehicles. In contrast to the BC-PCA approach, which
uses the scanned vehicle points, the ASM approach uses the
derived shape points. Both approaches use the min and max
values of the x-, y- and z-coordinates of the points to determine
a bounding box and estimate the position of the vehicle by the
center of the bounding box. The BC-PCA estimates the heading
Θ of the vehicle by using the eigenvector e with the highest
eigenvalue:

Θ = atan2 (ey, ex) (1)

The heading of the ASMs, blue triangles Figure 1 d, is calcu-
lated by the ASM optimization (Coenen et al., 2018). We use
the database from Coenen et al. (2018) with 30 cars and 2 vans
as well as their particle optimization. The shape is optimized
by four eigenvalues σ1−4 and the pose by a 2D-transformation.
The z-coordinate is fixed at the lowest z-value of the scan points
and the pitch and roll are not considered by assuming vehicles
driving on the ground. The particle optimization (Coenen et
al., 2018) changes the shape and pose of the model for each
particle and keeps the n-th best particle at each iteration. We
calculate the score for each particle by the log-likelihood (the
squared mean error) of a detected pose to the nearest triangle
and use an occupancy voxel grid to punish free voxels inside
the ASM bounding box. Voxels will be marked as free if the
corresponding pixel of the back projected voxel center has a
bigger distance than the voxel.

4. EXPERIMENT

We used a sedan type car and a van for our experiment. The
bounding box of the sedan type car is 4.5×1.78×1.52 m, in
contrast to the van, which is 4.9×1.9×1.9 m. Figure 2 shows

Figure 2. The setting for the measurements: the total
station (left), both cars (in the back) and the scanners at

the dynamic rack (center)

the rack with the two LiDAR Velodyne HDL-64E S2 and VLP-
16 between the vehicles (measurement scene 0) and the total
station, statically placed 10 m in front of the vehicles. The ve-
hicle positions were determined by measuring the middle axis
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Figure 3. Bottom: the different locations of the scanner
and car/van positions during the measurements (magenta).

Top: the detections using the BC-PCA (blue) and ASM
(red) in the HDL-64 scans

and a front point at the brand sign of the vehicle. The middle
axis of the van was calculated by the measurement of roof rack
fix points and the sedan type car middle axis by measuring the
position of the antenna. We assumed a semicircle center be-
tween the vehicles and spread 25 measurement poses in total,
5-6 poses at each semicircle with approximated radii of 7 m
,15 m, 30 m and 50 m, see Figure 3. At each pose we measured
4 points at the rack with the total station to determine the pose
of the scanner.

5. EVALUATION

We first validated our neural network by labeling a completely
different junction scenario. Secondly, we calculated the Eu-
clidean distance between the detected positions and the ref-
erence positions. We showed how the detections by ASMs
slightly outperform the detection by BC-PCA. For this, we an-
alyzed the mean pose accuracy, the viewing angle influence on
the improvements for the different car models (van and sedan
type) and the impact of different resolutions. For the evaluation
of the vehicle heading we analyzed only ±90◦ difference, be-
cause the BC-PCA does not distinguish between the front and
the back of a vehicle and the ASM also has difficulties to dis-
tinguish between the two opposite orientations, because of the
geometric symmetries of vehicles (Coenen et al., 2018). How-
ever, the pose derived from the center of the bounding boxes is
not effected by the 180◦rotation.

5.1 Neural Network

We used 2000 scans from another junction to calculate an accu-
racy of 93%, a precision of 40%, a recall of 90% and a f1-score
of 62%. Figure 4 shows the difficulties of our network. There
are some erroneous detections in the background and obstacles
in the front which occlude vehicles and are labeled as vehicles.
Furthermore, the network slightly inflates the objects. Gaps in
the training labels lead to false negatives and indicate a need for
improvement in the trained labels.

Figure 4. The validation of the neural network: true
positives (green), true negatives (blue), false positives

(red), false negatives (white)

5.2 Sedan type car

The height of the sedan type car is below our scan height of
1.8 m, which has the benefit of having measured points on the
roof of the car in many scenarios. However, it is also partly
occluded by the van in other scenarios, because of the same
reason. By using ASMs we improve the mean position accu-
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(b) VLP-16 2◦ vertical resolution

Figure 5. The mean error of the models for the sedan type
car. Split in the total Euclidean error, the error along the

car axis (left) and the heading error (right)

racy by 0.34 m (0.54 m to 0.2 m) in Velodyne HDL-64 scans
and by 0.37 m (0.57 m to 0.2 m) in Veldoyne VLP-16 scans for
a sedan car type, see Figure 5. Whereby for the VLP-16 anal-
ysis less scan positions (16/23) are considered due to the low
amount of detected points. The comparison of the mean errors
relatively to the car axis shows a balancing error parallel and
orthogonal to the axis for the BC-PCA, because of the view-
ing angle depending position shift, see enlarged image part in
Figure 3 (red points). The ASM position error orthogonal to the
car axis is smaller compared to the error parallel to this axis, be-
cause of an more adequate model width and heading estimation.
The improvement of the mean heading error is approximately
5◦for both resolutions. Figure 6 shows the improvement by us-
ing ASMs compared to the BC-PCA by the error differences for
each considered scene in more detail. Independent of the res-
olution the poses of ASMs show a continuous improvement of
the position and the heading accuracy. The improvements in the
HDL-64 scans (Figure 6 a) show no significant deteriorations in
all scenarios (except scene 50 5), whereas the VLP-16 (Figure 6
b) indicates 30 m as maximum distance for adequate car detec-
tion in scans with a 2◦resolution. There are small deteriorations
in both resolutions for different scenes, because the ASM is not
restricted by missing scan points in the car shadow and thus the
shape is not adequately restricted, especially the length of the
model. In total there is a maximum improvement of 1.74/1.37 m
towards a maximum decline of -0.08/-0.11 m. Figure 7 shows
the strengths and weaknesses of the two pose determination ap-
proaches by their total error in the HDL-64 scans for different
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Accuracy Improvement: Difference PSM/ASM Error
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(b) The improvement of ASM at VLP-16 scans

Figure 6. The improvement of the accuracy using the
ASM compared to the BC-PCA for the sedan type car

scenarios. It shows the underestimation of the car length by the
BC-PCA because of the missing scan points at the end of the car
by the error parallel (green) and the systematic error orthogonal
to the car axis (yellow). The systematic shift towards the scan-
ner is also visible in the enlarged image part at the red points in
Figure 3. The underestimations of the length are mitigated by
the ASMs (Figure 3 blue points), especially the error orthogo-
nal to the car axis is reduced. The peaks in the total HDL-64
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Figure 7. The absolute errors of the detections of the
sedan type car in the HDL-64 scans. The position error
(left) includes the error ratio orthogonal (yellow) and

parallel (green) to the car axis

error diagram (Figure 7) in scene 7 5, 30 0 and 50 0 identify
the weakness of the BC-PCA approach for only having scan
points at the front or the back of the car. In these scenes, the
pose accuracy can be highly improved by the ASM. The ASM
significantly reduces the error along the car axis by assuming a
ordinary vehicle length. In the other scenes the car is well visi-
ble as an L-shape (edge and front/back or roof). Therefore, both

approaches work well and the differences are relatively small,
compare Figures 6 and 7.

5.3 Van

The mean accuracy of the van’s pose estimation is improved by
using ASMs by 0.25 m (0.44 m to 0.19 m) in Velodyne HDL-64
scans and 0.26 m (0.48 m 0.22 m) in Veldoyne VLP-16 scans,
see Figure 8. Looking at the point clouds, it can be observed
that, in contrast to the previous car, the scan points on the roof
of the van are missing. This is explainable by the experimental
setup, in which the scanner height is below the car’s roof. The
missing points lead to a negative effect on the pose estimation
by the BC-PCA, which determines the van width more inac-
curate in contrast to the sedan type car. However, compared to
this car, the van is detected in more scenarios (16/18 in VLP-16,
compare Figure 6 and 9) because of its bigger size. In addition
to that and looking at scene 50 5, the missing detection of the
car in the HDL-64 scans (in contrast to the van, which is visi-
ble) indicates a maximum distance of around 50 m for a reliable
detection in HDL-64 scans. Figure 9 shows the detailed error
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Figure 8. The mean error of the models for the van. Split
in the total Euclidean error, the error along the van axis

(left) and the heading error (right)

difference for each considered scene. Independent of the res-
olution using ASMs improves the detected poses in almost all
scenarios. However, for the HDL-64/VLP-16 there are max-
imal improvements of 1.38/0.64 m toward a maximal decline
of -0.14/-0.08 m. The impact of the different vehicle shapes is
presented clearly by comparing the error of the van and the car
in the HDL-64 scan, Figure 10 and 7. The different effects of
the shape on the ASM and BC-PCA are visible by comparing
the relation of the error parallel and orthogonal to the vehicle
axis. The BC-PCA orthogonal error for the van is higher com-
pared to the car. Thus, the center shifts to the left front because
of the too short bounding box and only one visible edge. The
ASM completes the missing edge and compensates the orthog-
onal error very well, but also often underestimates the length of
the van. In contrast to the van pose, the sedan type car’s pose
can be estimated more accurately in the orthogonal direction of
the vehicle axis by the BC-PCA because parts of the roof are
visible. However, the occluded last part of both vehicles leads
to an underestimation of their lengths. The ASM estimates the
vehicle length and width more accurately and thus reduces the
errors along both vehicle axes by adding missing bounding box
edges assuming common width, height and length ratios.
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(b) The improvement of the ASM in VLP-16 scans

Figure 9. The improvement of the accuracy by using
ASMs in contrast to the BC-PCA for the van

6. CONCLUSION AND OUTLOOK

In summary, we used a geometric lane and ground filtering ap-
proach to generate training data for a simple neural network.
We determined the mean accuracy of vehicle poses extracted
from LiDAR point clouds generated by 3D scanners with 64
beams at 0.4◦and 16 beams at 2◦vertical resolution. We accu-
rately detected cars, with at least 20 scan points, in distances
of up to 50 m in Velodyne HDL-64 scans and up to 30 m in
VLP-16 scans. We calculated a mean accuracy for a BC-PCA
approach of around 0.48 m with a variance of around 0.12 m.
We showed that ASM (Coenen et al., 2018) could be used to im-
prove this pose accuracy by around 58% in comparison to the
BC-PCA. We reached a mean accuracy of 0.2 m with a variance
of 0.01 m by using ASMs. Further, we showed that the vertical
resolution of the scanner has a negligible influence on the ac-
curacy, but it affects the detection robustness due to the higher
amount of scan points at the vehicle. The same applies for the
vehicle size. The current ASM data set includes only two vans.
We propose to first classify the vehicle type in order to use a
more proper ASM for different vehicle types like cars, vans or
buses and trucks. In future work, we will relabel our training
data set by optimizing the lane and ground filtering segmen-
tation and also distinguishing between cars, van, trucks/buses,
pedestrians and cyclists. We will train other neural networks
to come up with a robust traffic participant detection. In ad-
dition, the classification of cars, vans and buses/trucks will be
used for training separate ASMs, which might lead to more spe-
cific ASMs and thus to a better pose accuracy. We will use the
ASMs to track vehicles in point clouds and improve the detec-
tion accuracy by integrating the scan points from different time
steps in the ASM estimation.
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