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ABSTRACT: 

 

Lodging is a major yield-reducing factors in wheat, causing reductions up to 80%. Timely detection of lodging can reduce its impacts 

and support proper decisions regarding expected yield, crop price or its insurance. Since the incidence of lodging is heterogeneous 

within a field, very high-resolution remote sensing data can be viable for accurate and prompt spatio-temporal assessment of lodging 

severity. As such unmanned aerial vehicles (UAVs) provide a versatile and cost-effective solution to monitor crops on a small scale 

with sub-centimetre spatial resolution. In this study, we analysed the spectral variability between different grades of lodging severity 

(non-lodged (NL), moderate (ML), severe (SL) and very severe (VSL)) and classified them using high-resolution UAV data. 

Multispectral orthomosaic UAV images with 5cm resolution and nine bands (covering the VIS-NIR spectrum with Sentinel-2 filters) 

were acquired in May 2018 for two wheat fields in Bonifiche Ferraresi farm, Jolanda di Savoia, Italy. Concurrent to the time of image 

acquisition, a field campaign was carried out in which crop characteristics and lodging related parameters were collected. The results 

showed that reflectance magnitude increased with lodging severity and demonstrated that the red-edge and NIR bands can be used to 

clearly discriminate between NL and lodged (all grades) wheat and to some extent between different lodging classes (ML, SL and 

VSL). The nearest neighbourhood classification performed using an object-based segmentation yielded optimal results with an overall 

accuracy of 90%, thus demonstrating the use of multispectral UAV data as a promising tool for wheat lodging assessment. 

 

 

1. INTRODUCTION 

The lodging of cereal crops, which is caused due to genetic, crop 

management and environmental factors can have a detrimental 

impact on crop yield and grain quality (Berry et al., 2004). 

Especially in wheat, lodging is known to reduce crop yield by 60-

80% (Berry and Spink 2012; Setter, Laureles, and Mazaredo, 

1997). Therefore, proper assessment of lodging can facilitate 

accurate yield estimation, help plan harvest operations, and aid in 

agricultural disaster relief compensation (Yang et al., 2017).   

 

The traditional methods of assessing lodging rely on manual in 

situ measurements and visual inspection of lodged areas, which 

can be time-consuming, labour intensive and point-based. 

Remote sensing (RS) technology is a feasible and reliable 

alternative for obtaining timely information on crop lodging over 

vast areas (Atzberger, 2013). In the context of crop monitoring, 

unmanned aerial vehicles (UAVs) are increasingly being adopted 

as RS platforms (Colomina and Molina, 2014; Bendig et al., 

2015). Compared to proximal systems, UAV platforms can 

survey areas more quickly without disturbing the vegetation 

(Burkart et al., 2015). In addition, their ability to provide data in 

high temporal, spatial and spectral resolutions along with their 

flexibility of operation, compared to aerial and satellite 

platforms, make them a promising tool for crop monitoring 

(Aasen et al., 2015).   

 

Our ability to assess crop lodging with RS is directly affected by 

high within-field spatial variability of lodging and the need for 

fine spatial and spectral resolution data at low cost. It is only in 

the past decade that UAV data has been utilized to detect and 

assess lodging damage in crops and has shown great potential 

(Chapman et al., 2014; Zhang, Walters, and Kovacs, 2014). 

While some studies have focused on the visual interpretation of 

lodging from orthomosaic images (Du and Noguchi, 2017; 

Zhang, Walters, and Kovacs,, 2014), a few others have dealt with 

quantitative lodging assessment (Chapman et al., 2014; Chu et 

al., 2017). Haiying, Guijun, and Hongchun (2014) reported that 

lodged wheat area could be extracted with an accuracy of more 

than 80% based on multi-spectral (3 bands) and textural features 

derived from UAV data. Yang et al. (2017), on the other hand, 

showed that adding texture information to the RGB image did not 

improve the lodging interpretation accuracy in rice. Recently, Liu 

et al. (2018) showed that the combination of visible, texture and 

thermal infrared images could be used to  detect lodging in rice 

and estimate percentage of area affected with an accuracy of 

more than 90%.  

 

Some studies have demonstrated the feasibility of incorporating 

point cloud digital elevation or digital surface model (DEM or 

DSM) information for lodging assessment. For instance, 

Chapman et al. (2014) quantified the proportion of lodging in a 

wheat field by determining the variance of DEM-derived pixel 

heights. In another study, Chu et al. (2017) investigated the 

potential for lodging detection in maize using crop height 

estimated from UAV data together with structure-from-motion 

(SfM) photogrammetry. However, to date the number of RS-

based studies characterizing crop lodging using UAV data is 

limited (Chauhan et al., 2019). Despite the interest, to the best of 

our knowledge, the sensitivity of multiple spectral bands (9) 

covering the entire 390-950nm region of the spectrum to crop 

lodging has not been studied from UAV data.  
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Figure 1. The selected wheat fields (red box) in Bonifiche Ferraresi farm, Jolanda di Savoia, Ferrara, Italy. The location map of the 

farm is shown on the left and the false colour composite (R: NIR3, G: Red, B: Green) of the UAV data is on the right 

 

 

The main objective of this study was to analyse the spectral 

variability of the features derived from UAV data and their ability 

to discriminate between different grades of lodging severity: 

healthy/non-lodged (NL), moderate (ML), severe (SL) and very 

severe (VSL). Based on the analysis, we also tested an object 

based classification method to generate a thematic map of 

different grades of lodging severity.  

 

 

2. MATERIALS AND METHODS 

2.1 Study area 

The study was conducted in the Bonifiche Ferraresi farm located 

in Jolanda di Savoia (44o52’36.21’’N, 11o56’37.5’’E), Ferrara, 

Italy (Fig. 1). The growing conditions (sowing date, crop variety, 

etc.) of the two selected fields were similar. Durum wheat 

(variety Marco Aurelio) was sown in both fields on 26 Oct 2017. 

The area covered by each field is 18.6 ha. The soil texture is 

mostly silty and clayey.  

 

2.2 Field data 

At the time of data acquisition, the crop was at the milking stage. 

The field data consists of observations about crop condition 

collected over multiple transects with a total of 51 plots of 2x2m 

geolocated by GPS measurements. We categorically defined four 

grades of lodging severity based on our visual assessment and 

crop angle/height measurements: healthy wheat with a crop angle 

<5o (NL), wheat with a crop angle between 5-30o (ML), wheat 

with a crop angle between 31-60o (SL) and wheat with a crop 

angle >60o (VSL). Of the 51 plots, 20 were NL while the 

remaining were categorized into different grades of lodging 

severity (ML, SL, and VSL). The field measurements were taken 

at the same time as UAV data acquisition.  

 

2.3 Platform and sensor 

The UAV flight was carried out by the SAL Engineering 

company. The UAV system was a dij s900 hexacopter with a 

global navigation satellite system (GNSS) and a MAIA S2 

multispectral camera with nine monochrome sensors capable of 

the simultaneous acquisition of images at several wavelengths in 

visible (VIS) to near-infrared (NIR) region (390-950nm). Each 

sensor had a band-pass filter installed in the MAIA camera, with 

the same central wavelength and bandwidth as Sentinel-2. The 

extremely fast exposure time of the nine global shutter CMOS  

 

 

sensors (up to 1/5000 sec), low travel speed (5m/sec) and 100 m 

altitude from the ground guaranteed image acquisition without 

blurring effect.  

 

The images were acquired with the ground sampling distance 

(GSD) of 5cm and field of view of about 60x45m. The images 

were acquired on a sunny day without strong wind between 10am 

and 4pm. 

 

 
 

Figure 2. The sensitivity of optical bands of MAIA S2 cameras 

(Nocerino et al., 2017) 

 

 

3. METHODS 

3.1 Data pre-processing 

The images were first geometrically corrected using the 

calibration certificate that is provided with each optic. The 

certificate contained the calibration interior orientation 

parameters that enabled the removal of geometric distortions. 

After that, the images were radiometrically corrected using an 

ILS (Irradiance Light Sensor). The images were acquired by 

setting the camera at 8bit with the DN values (after correction) 

ranging between 0-255. To obtain the reflectance (%), the DN 

value was divided by 255 and then multiplied by 100. The 

undistorted multilayer images were processed in Photoscan 

(Agisoft) software and the orthomosaic with nine bands was 

generated. The spatial resolution of the orthomosaic was 5cm.  

 

3.2 Extraction of spectral values and statistical analyses 

The average spectral values from the nine bands were extracted 

from the 51 plots. In order to account for edge effects, the plot 

size was reduced by 10 cm on each side. A 39x39 window was 

used and a total of 1521 pixels were averaged from each plot. The 

reflectance spectra of the sampled plots in nine bands (390-

950nm) were first analysed for different lodging grades. A 

transect-based analysis was also performed by choosing a few 
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samples of pixels to evaluate the radiometric variation of spectral 

reflectance for different grades (NL, ML, SL, VSL). 

 

The Kruskal Wallis test was used to examine the statistical 

differences of sample means among the classes. This is a non-

parametric test suitable for unequal sample sizes with more than 

two groups/classes.  

 

3.3 Classification of the target 

An object-based segmentation of the UAV multispectral 

orthomosaic was carried out in eCognition software using a 

multi-resolution segmentation (MRS) algorithm (Blaschke, 

2010). It is a useful optimization approach for high-resolution 

images. Different scale (governs object size), shape (describes 

the similarity between object borders and a perfect square) and 

compactness (describes closeness of pixels) parameter values 

were tested to determine the optimal values. The image layer 

weights were set based on the test results of the spectral 

variability analysis. 

 

We used supervised classification based on the nearest neighbour 

(NN) algorithm, whereby membership value between 0-1 were 

selected based on the object’s feature space distance to its nearest 

neighbour. Firstly, the field data were randomly divided into 32 

plots for training and 19 for testing. A training and testing area 

(TTA) mask was created in eCognition and the classifier was 

trained using the training mask. The mean spectral reflectance 

from all bands for each identified object was used to classify the 

image. In addition, the normalized difference vegetation index 

(NDVI) was used as an independent masking criteria to separate 

soil patches from vegetation (NDVI <0.4). This part of the field 

corresponds to drainage or patches of visible soil as a 

consequence of lodging. To aid the selection of training samples, 

the sample editor window was used to provide a visual 

comparison of the separability between different classes 

according to mean spectral values. After classification, the image 

objects belonging to the same class were merged and exported.  

 

The results of the classification were evaluated using two 

methods: classification stability (examines the ambiguity of the 

identified classes) and an error matrix. The error matrix was 

calculated using an independent test data (19 plots) and evaluated 

in terms of the overall accuracy, producer’s (PA) and user’s 

accuracy (UA) and kappa coefficient.   

 

4. RESULTS AND DISCUSSION 

4.1 Spectra analysis for discrimination 

The spectral characteristics illustrated in Figure 3 provide a 

theoretical basis of the capability of remote sensing for 

discriminating lodging severity. Figure 3a shows the box plot of 

the reflectance spectra for the four classes across different 

wavelengths. Lodging of wheat increased the magnitude of 

overall reflectance while following the same overall trend as a 

NL crop.  

 

Considering the spectra of NL and lodged classes in general (Fig. 

3a), we can see that the relative change in spectral reflectance in 

the visible region is less than that in the red edge and NIR region 

(700-950nm). The overall reflectance in visible region is less due 

to increased chlorophyll absorption, except in the green band 

(central wavelength 560nm) where it’s minimum. In the visible 

region (390-700nm), the average reflectance of NL plants was 

6% while that of VSL group was almost 9%; while in red edge 

and NIR region, it increased to 13% and 23%, respectively. 

 

A red-edge band is the transition region (between red and NIR 

bands) of rapid change in canopy reflectance caused by strong 

chlorophyll absorption and scattering in NIR channel. It is highly 

sensitive in detecting physiological plant status (such as 

chlorophyll content), especially at high biomass and for detecting 

vegetation stress (Le Maire, Francois, and Dufrene, 2004). It is 

possible that a change in the crop physiological status during 

lodging makes the red-edge band sensitive to this phenomena. In 

the NIR region, however, the spectral gap between NL and the 

VSL group was the highest (23%). This behaviour can be 

attributed to the change in plant structure (increase in crop angle) 

during lodging that increases reflectance as a consequence of 

more horizontal leaves condition. Thus, green (560nm), RE1 

(Red-edge1 705 nm), RE2 (Red-edge2 740 nm), NIR1 (Near-

infrared1 783 nm), NIR2 (Near-infrared2 842 nm), and NIR3 

(Near-infrared3 865 nm) bands seem to better discriminate 

between NL and lodged crops than the other bands.  

 

The variability in the mean spectral reflectance among the three 

grades of lodging is also shown in figure 3a. The red-edge and 

NIR bands performed reasonably well in separating ML, SL and 

VSL groups. As can be seen in Figure 3a, on average, the 

reflectance for these three classes varied between 28% to 32% in 

the red-edge region (705 nm, 740nm) and 51% to 58% in the NIR 

region (783 nm, 842 nm, 865 nm). On the right (Fig. 3b), we also 

show the transects of the pixels  that were sampled  from different

 

 
 

Figure 3. (a) Boxplot for field spectral reflectance at different wavelengths for different classes and (b) the transects of the pixels 

sampled from different classes in NIR1 (783nm) band 
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classes in NIR1 (783nm) band. The above spectral analysis 

showed that the 770-950nm range was statistically (at 0.01 

significance level) the best wavelength interval for the lodging 

detection, followed by 700-750nm and 540-580nm. According to 

the Kruskal Wallis test, even though the other wavelength ranges 

(except 430-450nm) were also statistically significant, the 

relative change in the reflectance among different classes was 

very low.  

 

4.2 Lodging classification 

Given the different spectral patterns between the lodging severity 

groups, supervised classification is a logical choice for 

classifying the images. Using the field data as a reference, we 

chose the training samples (from the training mask) for different 

groups. The separability of two of the classes is shown in Figure 

4. 

 

 
 

Figure 4. Separability between the training samples of non-

lodged (black) and severe (blue) classes in different bands. 

 

We then performed a nearest neighbourhood classification to 

identify lodged areas. A subset of these classified images is 

shown in Figure 5. Spectral analysis showed that green, red-edge 

and NIR bands were relatively more successful in discriminating 

between NL and lodged categories in general, and therefore more 

weights were assigned to these bands during the classification 

process. The soil target in the image has been denoted as ‘Others’ 

in Figure 5. The figure displays the results of clear discrimination 

of NL and lodged crop in general. According to the classified 

output, we found that around 58% of the total area was lodged 

(ML: 16%, S: 28%, VSL: 14%), 32% was non-lodged while the 

remaining belonged to ‘Others’ category. 

 

4.3 Accuracy assessment 

The accuracy assessment of the classification was performed in 

terms of classification stability (Table 1) and an error matrix 

(Table 2). The classification stability is calculated over all the 

image objects in the scene. The statistical operations are 

performed on the differences in degrees of membership of each 

object between the best and the second best class assignments. 

 

The ‘%Objects’ column (Table 1) refers to the percentage of 

objects that were classified in a particular class. For instance, 

31.36 and 13.93% objects were classified as NL and VSL class. 

‘Mean’ corresponds to the mean difference between first and 

second best classification membership value for a particular 

class. “Min.” and “Max.” are the minimum and maximum values 

of the difference between first and second best membership 

values. The ‘NL’ and ‘Others’ class had reasonably good 

classification stability with a high mean of 0.124 and 0.301 

 
Class %Objects Mean StdDev. Min. Max. 

NL 31.36 0.1238 0.0896 3.87e-06 0.452 

ML 17.48 0.0407 0.0360 3.65e-06 0.213 

SL 24.66 0.0433 0.1024 9.53e-07 1.000 

VSL 13.93 0.0205 0.0187 1.19e-07 0.123 

Others 12.58 0.3014 0.2569 2.32e-06 1.000 

 

Table 1. Classification stability 

 

 

 

Figure 5. Detection of different grades of lodging severity from the UAV images
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respectively. For the other classes, the values are lower than 0.05, 

which means that the second best assignment is nearly as good as 

the first. Thus, the classification stability among M, S, and VS 

groups is low as a consequence of the fuzzy transition between 

the lodged classes.  

 

However, classification stability, by itself is not a sufficient 

determinant of a nearest neighbour classifier’s performance. This 

is because the change in nearest neighbour slope function only 

affects the absolute membership values but not the sequence of 

membership to classes.  

 

The accuracy of the classification was also assessed through an 

error matrix, based on the test data (ground truth). From Table 2, 

the overall accuracy of the classification was 90% while the 

kappa index of agreement (KIA) was 0.86, which accounts the 

possibility of ‘agreement occurring by chance.’ Concerning the 

PA and UA for the individual classes, for “NL” and “Others,” the 

accuracy is >0.93. On the other hand, PA and UA of the ML class 

are 74% and 80% respectively. According to the matrix, the 

classification results for NL, ML, SL, and ‘Others’ classes were 

reasonable.  

 

A closer look at the matrix reveals that VSL class has a poor UA. 

There is significant mixing between SL and VSL classes. The 

most probable reason is that the spectral reflectance of VSL and 

SL classes is similar (a difference of only 2%) and it is possible 

that the optical signal saturates when the crop angle is >60o. 

Overall, unlike the NL class, there is a fuzzy transition between 

lodged classes and heterogeneity of lodging incidence can result 

in mixed pixels.  

 

 

Class NL ML SL VSL Other

s 

Sum 

Confusion matrix 

NL 37.24 0 0 0.13 0 37.37 

ML 0.070 7.27 1.27 0.45 0 9.06 

SL 0 0.65 14.58 0.35 0 15.59 

VSL 0 1.95 3.52 4.06 0 9.54 

Others 0.74 0 1.04 0 26.67 28.45 

Sum 38.05 9.88 20.41 5.00 26.67 100 

       

Accuracy (%) 

Produce

r 

98 74 71 81 100  

User 100 80 94 43 94  

KIA per 

class 

96 71 0.66 79 100  

       

Totals 

Overall 

accurac

y 

90%      

KIA 86      

 

Table 2. Error matrix for the test areas 

 

 

5. CONCLUSIONS 

This study demonstrated the feasibility of using high-resolution 

UAV multispectral orthomosaic images to detect lodging in 

wheat, thereby allowing precision lodging management and 

understanding of on-going processes. The response behaviour of 

the reflectance spectra obtained from the UAV data was 

examined as a function of number of lodging severity groups. 

The discriminative features were explored through a comparison 

of the different grades of lodging severity (NL, ML, SL, and 

VSL). For the first time, high-resolution multispectral data from 

a UAV with nine spectral bands (the same as Sentinel-2) covering 

the 390-950 nm wavelength region has been utilized for lodging 

assessment. This enabled a comparison of spectral variability 

across nine bands. Overall, we found that there was an increase 

in the magnitude of reflectance spectra as the lodging became 

more severe. The increase was more pronounced in the green, 

red-edge and NIR regions of the spectrum, thereby showing the 

sensitivity of these bands to changes in the crop canopy structure. 

Furthermore, the overall classification accuracy was very high 

(90%) where NL, ML, and SL classes were separated with 

reasonable accuracy while there was some mixing of VSL class 

with the other groups. To conclude, bands in the range of 700-

950nm can effectively detect lodging in wheat. These results 

underline how multispectral data can be a advancement with 

resepct to conventional RGB camera traditionally monted on the 

UAV platforms. Although we believe that these results are 

transferable to different crop varieties and growing conditions, 

further research is required to assess this. A comparative analysis 

using a digital surface model (DSM), textural features, and 

vegetation indices as inputs can be performed to examine if more 

separability can be attained, especially among the ML, SL, and 

VSL classes. Further efforts can also be directed towards a 

comparison of reflectance spectra from UAV data with that from 

a spectroradiometer and Sentinel-2. 
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