The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10-14 June 2019, Enschede, The Netherlands

APPLICATION OF SELF-ORGANIZING MAP ON FLIGHT DATA ANALYSIS FOR
QUADCOPTER HEALTH DIAGNOSIS SYSTEM

De-Li Cheng™, Wei-Hsiang Lai

! Dept. of Aeronautics & Astronautics, National Cheng Kung University, No.1 Univ. Rd., Tainan, Taiwan - (P46061225, whlai)@mail.ncku.edu.tw

KEY WORDS: Fault Detection, Health Monitoring, UAS, Machine Learning, Self-Organizing Map, Vibration Analysis

ABSTRACT

The UAS fault problem has led to many potential risk factors behind its rapid development in recent years. Therefore, the diagnosis of
UAS health status is still an important issue. This study adopted the SOM machine learning method which is an unsupervised clustering
method to establish a model for diagnosing the health status of quadcopter. Take the vibration features of three flight states (undamaged,
motor mount loose, unbalanced broken propeller). Through those training data the model can cluster different vibration pattern of fault
situation. It not only can classify the failure status with 99% accuracy but also can provide pre-failure indicators.

1. INTRODUCTION

In recent years, the development of UAS has been changing with
each passing day, and has been applied to military exploration,
freight transportation, meteorological observations, and civil
aerial photography. As UAS get closer to human life, UAS are
bound to be a potential risk factor for human security. Therefore,

how to diagnose the health status of the UAS is an important issue.

The diagnostic system of UAS has gradually developed in recent
years and many applications have been completed like (Olson et
al. 2013). There are a lot of characteristics in the UAS that can
provide pre-failure symptoms of multi-rotors, such as EKF,
current and voltage changes, etc. As (Kandaswamy et al. 2017)
done. However, to complete the health of the overall components
of the UAS Diagnosis systems are not easy because of the many
different factors that must be considered. Despite that, vibration
has always been an important issue for rotating machinery, as
well as UAS. There are many UAS vibration analysis and
diagnostic studies, like analysis of UAS vibration elimination
(Radkowski et al. 2014); Fourier transform for analyzing the
frequency domain characteristics (Ghalamchi et al. 2018) and
time domain vibration characteristics and sound characteristics
and with mechanical learning for failure classification (Misra et
al. 2018).

That’s why embarked on the development of quadcopter health
diagnosis system. In particular, the diagnosis of the state of the
vibration of the quadcopter. The main power source of the
quadcopter is propeller and the brushless motor which cause
quadcopter continuously vibrate itself. When the two are slightly
damaged, the common user is difficult to detect, but as time goes
by, these injuries will gradually enlarge and even affect flight
safety. This study hopes to use a variety of common failure states
(Misra et al. 2018, Yong Keong Yap. 2014) with SOM
algorithms to classify the vibration changes between multiple
states to achieve quadcopter health diagnosis

2. EXPERIMENT DESIGN
2.1 Conditions of Flight

The data obtained in this study was collected by using a common
type of quadcopter (see Figure 1). There are several essential
well-controlled conditions that applied in this experiment. First,
quadcopter flied indoor that means it won’t be affected by the
wind. Second, we applied Althold mode which was created by

Ardupilot to the flight experiment. Third, battery used in every
experiments would remain 3.7V per cell, to avoid powerless
problem.

Because of motors revolution speed changes, there are several
pattern of vibration will generate. Especially, when quadcopter
maneuvers, motors revolution speed will change separately, and
it would make vibration data too complex to analyze. To avoid
the uncertainty of flight data, the flights in this study are hovering
and operating just by passive manipulations.

Fig. 1. The quadcopter used in experiment

2.2 Fault Characterization

The main topic of this paper is fault diagnosis of power system.
In order to avoid the classification model is too strict or lax, there
are two essential concepts about fault experiments. First, when
the fault is applied on quadcopter, it still can fly and maneuver.
Second, fault situations need to make the quadcopter unstable to
some extent. These two concepts may not clear defined, but the
machine learning model could still classify the relative fault.
Besides, the model would have enough classification ability and
it also won’t be too lax. There are two fault situations data were
applied in this research. First one is unbalance broken propeller
(Yong Keong Yap. 2014) (see Figure 2.), one blade was fault free
and another blade was cut. it would mount in one of motor of
quadcopter. When unbalance broken propeller is used to fly, it
will directly lead to insufficient lift and the eccentric rotating
mechanism will inevitably generate a lot of vibration.
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Figure 2. Unbalance broken propeller

Second one is motor mount loose in asymmetrically pattern (see
Figure 3.), the screws loosen the same side will make thrust
distribute on the bottom of motor unevenly. It will cause extra
moment on the arm of quadcopter and it also cause extra
vibration.

\
Figure 3. Motor mount asymmetrically loose

3. FEATURE EXTRACTION

3.1 Vibration Characterization

This paper only applied time domain feature to do extraction.
Because Not only we can’t measure motors RPM precisely, but
also we don’t have even sample rate of flight data. After many
test, we find that the SD card on-board can’t maintain writing
speed because of computational amount, specification of onboard
computer and SD card specification etc. Because of that, there
are approximate 5-10 percent of data have a big gap between
default sample rate. The rest of data approximately reach default
sample rate but its still have some concussion. For the above
reasons, we can’t use features which very depend on the accuracy

of sample rate. That is why we use time domain feature (see Table.

1.) which won’t affect easily by little change of sample rate.
Vibration signals are all collected by the on-board computer
which mounts at the center of quadcopter. Although sensors are
far from the motors and propellers, and the vibration signals are
more complex than the sensors below motors, diagnosis system
must be approachable.

3.2 Vibration Feature Extraction

This paper use gyro and accelerometer to obtain vibration signal
and then do pretreatment to the flight data (e.g. remove low
sample rate data). Then we applied three methods which are
Standard deviation, Root mean square, sample entropy (Richman
et al. 2000) (see table 1) to extract the feature from the data.

Table. 1. Features of vibration

feature description

RMs = [P
n

SE — —Iog ¢n+1(r)
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Feature extraction remove useless data and preserve important
data. In the beginning of process, the data before quadcopter take
off and land be removed. Second the data with low sample rate
(5-10% of data set) also be removed. Additionally, sample rate
which below 900Hz is belong to low sample rate (default sample
rate is 1000Hz). Third, for the purpose of eliminating the effect
of moving acceleration, high-pass filter was applied to filter the
signal which below 5Hz. Next, statistical methods (see Table 1)
are used to extract relevant feature from data. After above process,
signal data transfer to representative characteristic data.

The feature extraction of three flight data is shown at Figure 4
Among them, the orange line is unbalance broken propeller, the
yellow line is the motor mount loose, and the blue line is
undamaged (see Figure 4(g)). It can be clearly seen from Figure
4 that the root mean square and standard deviation characteristics
of the unbalanced broken propeller are greater than the other two
conditions. In fact, the flight with unbalance broken propeller is
indeed the most unstable of the three conditions. The gap
between motor mount loose and undamaged RMS and STD is not
obvious, but relying on sample entropy can still distinguish
between two different states such as Figure 4, (a) (b) (d).
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Figure 4. (a)
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Figure 4. (g)

4. BUILDING MACHINE LEARNING MODEL

4.1 Self-Organizing Map

Self-organizing map (Kohonen et al. 1995) is an unsupervised
clustering machine learning method and is a type of artificial
neural network that is trained to produce a low-dimensional and
discretized representation of the input space of the training
samples, called a map, and is therefore a method to do

dimensionality reduction.

SOM applies unsupervised

and

competitive learning, it means in every iteration will come out
with a winning neuron which has the shortest Euclidean distance,
and then winning neuron will update weight vector and
neighbourhood also. Usually, neurons are interconnected by
N X N hexagonal grids. Summarily, the purpose of SOM
methodology is clustering data and find the pattern of the data set,
and the neurons which have the similar weight will cluster
together at the training process. After SOM trained, SOM
preserve the topological properties of the input space and create
low-dimensional map (output space), and it make the clusters of
neurons represent different situations.
(Vesanto et al. 2000) use SOM to complete the problem of high-
dimensional data clustering and classification to simplify high-

dimensional data.
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(Lin. 2016, Chiang. 2017) use SOM method and data feature
extraction to analyze the vibration signal of rotating machinery
and complete its health diagnosis. It means that SOM is suitable
for high-dimensional features of UAV status classification. This
study used the SOM function built in Matlab.

4.1.1 Normalization

Original feature data in different dimensions are with various
scale range. That’s why before SOM start training, features will
be normalized by z-score method, ensure that every feature can
compete at the same standard. By using Z-score, features in the
same dimension are with scale range of standard deviation.

Di=¥7, 2 j=12..,n @)
S = |Lym (xij — D.)Z i=1,2,..,n )
J m—1 ~i=1\Xij i) o] y Ly ey

The variable minus mean then divided by standard deviation, so
come, the distance between mean and variable can be measure
by scale range of standard deviation.

_ xij_Dj

xij=_ ,i=

wom;j=1,2,..,n 3)
Sj

4.2 Important Parameter

In this study, a total of three flight states (undamaged, motor
mount loose and unbalance broken propeller) were added for
SOM training. One set of feature vectors has a total of 18
dimensions, including accelerometers and gyroscopes X, Y, z.
Standard deviation, root mean square and sample entropy. Each
states are trained in about 110 row data to ensure that the final
model of the neurons can be evenly distributed.

Hits

Figure 5. Cluster of neurons

4.3 Clustered Result

The results of the model training show that three clusters of
neurons representing different states can be separated by SOM
due to the difference in feature patterns (as shown at Figure 5) In
the case of clustering, the upper left corner is an undamaged
cluster, the lower left corner is a motor mount loose failure
condition cluster, and the right side is an unbalanced broken
propeller failure status cluster. The number represented in
hexagonal is the number of recent training data around the neuron
referred to as hits.

5. FAULT DIAGNOSIS
5.1 Diagnosis

It can be seen from Figure 5 that even if each cluster of neurons
is well clustered, different hits in each cluster represent that the
neurons correspond to several training data (a training data only
corresponds to one neuron). So different hits mean different
representation. In order to be able to make a better classification
and also low the error, this study only took neurons with more
than 5 hits in each cluster for subsequent diagnosis of quadcopter
health to ensure the representation of neurons.

5.1.1 Cluster Test Data

After selecting the neurons whose hits number is greater than 5,
we sorted out three representative neuron clusters (representing
undamaged, motor mount loose and unbalanced broken propeller
respectively). Classification: First, the test data need to normalize
by z-score used standard deviation of training data and mean of
training data. Next, clustered the test data in 1-NN method, it will
find the nearest neuron called best match unit (BMU) and the
distance between BMU and test data is called Minimum
quantization error (MQE). After finding the BMU, the cluster
of test data is the cluster of BMU. This completes the clustering
and completes classification at the same time.

Cit™(x) = Y 4

X is test data, Y is neurons.

SOM clustered model

¥

Pick neurons which greater than 5 hits

L

Clustered picked neurons

¥

1-NN find belong cluster

L 2

Test data clustered, state classification

Figure 6. Process of classification

5.1.2 Fault Classification

The confusion matrix was applied to test classification ability of
model and also put another fault to test how SOM model can do.
The results are shown below (see table 2 and table 3).
According to the results of the confusion matrix, we can confirm
that the SOM model has a good classification ability, and the total
accuracy can be as high as 99%, and the Recall of failure situation
can reach 100%. This paper added data similar to the training
status for the classification of the balance of the slightly broken
propeller, the unbalanced complete propeller, the motor
symmetry loose, and it represent by the second confusion matrix.
The unbalanced complete propeller and motor symmetry mount
loose still have a good Recall after classification by the model, so
that similar failure conditions can be classified because the
vibration modes are similar. Besides, the condition of Balance
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slightly broken propeller are not ideal. 71% are classified as non-
failure but 28.9% are classified as invalid.

Table 2 Confusion matrix of model

Motor
Actual Unbalance Mount
: undamaged broken Same Precision
Predict .
Propeller side
Loose
undamaged 283 0 0 100%
Unbalance
Broken 0 210 0 100%
Propeller
Motor
Mount 5 0 161 96.98%
Loose
Recall 98.26% 100% 100% 99.24%
Table 3 Confusion matrix of model
Actual BB?:)a;;: Unbalance Mo(;(i)argl\rfl;unt
Predict propeller Propeller Loose
undamaged 201 5
Unbalance
slight
Broken 0 210 0
Propeller
Motor Mount 82 0 113
Loose
Recall 28.9% 100% 95.7%

5.2 Flag of Fault

The establishment and diagnosis of the SOM model are basically
based on the comparison of Euclidean distance. Therefore, in
addition to diagnosing the health status of the quadcopter, this
model can also provide the Euclidean distance ratio of no damage
neuron to other failure status neuron as a kind of judging
quadcopter health. It can provide us an indicator for diagnosing
slightly failure situation (e.g. Table 3 balance broken propeller
fault).

After the test data (whether undamaged, or not) is clustered, the
Euclidean distance of the nearest neuron between the test data
and each clusters of neurons are calculated, and the Euclidean
distance between the neurons in the failure state (i.e. MQE to the
failure clusters neuron) is the denominator, naturally distance to
the undamaged neuron (i.e. MQE to the undamaged clusters
neuron) is the molecule. When the magnitude of ratio is lower
than 1, it means quadcopter is undamaged, and if the ratio is close
to one or beyond 1, the state of the quadcopter is gradually
approaching the failure cluster, and the user needs to check the
motor and the propeller.

Figure 7 shows the undamaged flight test data ratio curve. The
horizontal axis is the number of test data and the vertical axis is
the Euclidean distance ratio. Comparing with Figure 8, we realize
that the ratio of the upper half of Figure 8 exceeds 1 multiple
times. Even though 78% of the data in Figure 8 flight diagnosis

is non-failure, it still needs to be done immediately with its motor
and propeller an examination.
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Figure 8. Little damage on the edge of propeller
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The slight failure is hard to classify (see Figure8), but with the
help of distance ratio and failure recall, slight failure can still be
detected by the model, both of them could provide an indicator
for pre-failure.

6. CONCLUSIONS

In this study, the flight data of the power system failure and the
undamaged flight data were combined with the characteristics of
the time domain to establish the machine learning model. The
clustering model is completed by SOM and the failure detection
and classification can be completed simultaneously with an
accuracy of 99%, and the recall of failure situation can reach
100%. For other slightly failure it could still detect and classify
through the distance ratio and failure recall.

Although the regulations of this paper are not broad enough, the
state of failure that can be identified is limited, but it is a little
progress to be able to diagnose in real flight data. In the future we
will continue to work on other failure features including
frequency domain features, and enhance model classification to
enable accurate health diagnosis of quadcopter that are generally
flying outdoors.
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