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ABSTRACT: 

The diversity and heterogeneity of coastal, estuarine and stream habitats has led to them becoming a prevalent topic for study. 

Woody ruins are areas of potential riverbed habitat, particularly for fish. Therefore, the mapping of those areas is of inter est . 

However, due to the limited visibility in some river systems, satellites, airborne or other camera-based systems (passive systems) 

cannot be used. By contrast, sidescan sonar is a popular underwater acoustic imaging system that is capable of providing high- 

resolution monochromatic images of the seafloor and riverbeds. Although the study of sidescan sonar imaging using supervised 

classification has become a prominent research subject, the use of composite texture features in machine learning classificat ion is 

still limited. This study describes an investigation of the use of texture analysis and feature extraction on side -scan sonar imagery in 

two supervised machine learning classifications: Support Vector Machine (SVM) and Decision Tree (DT). A combinatio n of first- 

order texture and second-order texture is investigated to obtain the most appropriate texture features for the image classification. 

SVM, using linear and Gaussian kernels along with Decision Tree classifiers, was examined using selected textur e features. The 

results of overall accuracy and kappa coefficient revealed that SVM using a linear kernel leads to a more promising result, with 77% 

overall accuracy and 0.62 kappa, than SVM using either a Gaussian kernel or Decision Tree (60% and 73% overall accuracy, and 

0.39 and 0.59 kappa, respectively). However, this study has demonstrated that SVM using linear and Gaussian kernels as well as a 

Decision Tree makes it  capable of being used in side-scan sonar image classification and riverbed habitat  mapping. 

1. INTRO DUCTIO N

Coastal, estuary and stream areas have diverse and 

heterogeneous habitats such as seagrass beds, mangrove, coral 

reefs and fish (Micallef et al., 2012; Mustajap et al., 2015). 

Thus, the habitat of streams and rivers has become a prevalent 

topic for study in many fields. Kaeser & Litts (2008) noticed 

that the wide distribution of woody ruins that are found in many 

rivers and streams can be a potential riverbed habitat, especially 

for fish. Understanding the spatial distribution of benthic habitat 

by providing maps of the substrates and seabed morphologies 

becomes essential in developing and managing river  and 

estuary environments with ecosystem-based management 

strategies (Hasan et al., 2012; Kaeser et al., 2013; Buscombe,  

2017 

Underwater acoustic technologies, such as multibeam echo- 

sounding (Kostylev et al., 2001; Parnum, 2007) and sidescan 

sonar (SSS) (Blondel, 2009; Lurton et al., 2015; Gutperlet et al., 

2017) have been successful used for marine and estuarine 

habitat  mapping; especially in turbid environments where 

optical-based methods can be ineffective. Of the various 

acoustic mapping technologies available, SSS was chosen to 

carry out the benthic mapping in this study, as it can provide 

wide coverage in shallow water depth (<10 m), and the imagery 

is able to capture epi-benthic structure in high-resolution 

(Anderson et al., 2008; Blondel, 2009; Buscombe, 2017). SSS 

had also been previously shown to be effective at  mapping 

benthic habitats in the lower Swan River (Parnum & Gavrilov, 

2009). 

SSS operates by transmitting an acoustic signal that is wide in  

the port and starboard direction, but narrow fore and aft. SSS is 

typically deployed as a tow-fish to keep a low altitude and 

decouple it  from vessel motions. As a SSS moves through the 

water, it builds up an acoustic (monochromatic) image of the 

seafloor made up of the received acoustic backscatter levels  

(i.e. the amount of sound scattered back towards the tow-fish). 

The backscatter image recorded by a SSS can be used to 

identify structures and changes in substrate. Hard and/or rough 

structures return high backscatter values; whereas, soft and 

smooth surfaces return low backscatter values. In addition, the 

texture of the image can be useful for interpretation and 

classification. Although SSS does not directly measure depth 

across the image, the length of the shadow relative the tow 

fish’s position can be used to infer the height of an object above 

the seafloor. For more details on the theory and application of 

SSS see Blondel (2009). 

Benthic habitat maps based on the segmentation and 

identification of features in SSS images, can be done manually 

(Bickers, 2003) or using automated image analysis (Blondel et 

al., 1998; Blondel, 2009; Parnum & Gavrilov, 2009; Buscombe,  

2017). Due to the imperfect nature of SSS images, the 

automation of the creation of habitats maps using SSS is not 

trivial to implement and artefacts in the data can decrease the 

accuracy. Moreover, automation of SSS has not be 

comprehensively tested on all types of benthic habitat. 
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The use of textural analysis has been used in the wider  

community of SSS image analysis research (Blondel, 2009). 

Although both first -order statistical texture and second-order 

statistical texture analysis have been proven as promising input 

for image segmentation and classification, most studies tend to 

use second-order analysis. A popular subject of research in side-

scan sonar image analysis that can be found in several studies is 

use of the Grey Level Co-occurrence Matrix (GLCM) method 

to extract the second-order texture features (Lianantonakis & 

Petillot, 2007; Harrison et al., 2011;  Hamilton, 2015; 

Buscombe, 2017; Hamill et al., 2018). Blondel et al., (1998) 

demonstrated GLCMs could be successfully used to segment 

SSS images. 

A recent focus topic has been side-scan sonar image clustering, 

segmentation, and classification. One of the most 

comprehensive literatures regarding sonar image processing for 

detection and classification of man-made objects can be found 

in (Dura, 2011). Many researchers have tried to adopt different 

methods of detection, segmentation and classification in side- 

scan sonar imaging (Nelson & Krylov, 2014; Buscombe et al., 

2016; Vikas, 2017). In addition, the development of computer 

vision and machine learning technology including Support 

Vector Machine (SVM) and Decision Tree (DT) classifications 

has influenced the applications for underwater acoustic remote 

sensing technologies (e.g. multibeam echosounder and side- 

scan sonar). 

Although the two machine learning classification methods of 

SVM and DT have been applied in several studies, both 

machine learning methods can be found more frequently in 

studies of multibeam echosounder classification such as in 

Ierodiaconou et al., (2007), Hasan et al., (2012); Grilli & 

Sh umchenia, (2015), and Prospere et al., (2016). The use of 

Decision Tree classification in sonar imaging can be found in 

Doherty et al. (1989) and the studies using SVM can be found 

in Junior & Seixas (2015), Rhinelander (2016), and Yang et al. 

(2016). 

The existence of this research limitation provides an  

opportunity for new research into the application of SVM an d 

DT classifications using combination first and second order 

texture features in SSS imaging. Thus, this study tries to 

undertake texture analysis and feature extraction of SSS 

imagery, and feature-based classification of SSS imagery usin g 

a Support Vector Machine and Decision Tree classification 

method. The popular convolutional neural networks (CNN)  

have not been used for this research due to the limited training 

samples available. 
 

 

Figure 1. Map of study area (image taken from Google Earth).  

2.  STUDY AREA AND DATA 
 

The SSS raw data have been acquired by Curtin University’s 

Centre for Marine Science and Technology (CMST) in  

February 2017 (Parnum, 2018) in the upper area of the Swan  

River, Perth, Western Australia (Figure 1). 

The study area covers approximately 16,032 m2 of this area and 

contains many submerged trees and riverbed ripples, which 

makes this area suitable for this image classification study. In 

addition, this area is highly turbid, so it  is not possible to use 

optical imaging techniques. The shallow nature of the upper 

Swan River (<10 m), makes SSS a more suitable for use than 

other acoustic methods, as it  provided good coverage. 

Data were collected using an Edgetech 4125 dual frequency 

SSS, operating at 400 and 900 kHz. The across-track  

beamwidth of both transducers was 50° with a 33° tilt 

(Edgetech, 2014), which means it  is not directly imaging below 

the tow-fish. Although both frequencies were recorded, only the 

900 kHz data was used in the final mosaic, as it  provided the 

highest image resolution of the two channels. Positioning was 

provided by a Hemisphere VS330 receiver with an A41 antenna 

receiving satellite based differential corrections (MarineStar). 

Data was recorded in the EdgeTech Discover 4125D version 
36.0.1.120 and logged as Edgetech data (.jsf) files. 

The pre-processing of the SSS data was carried out similar to 

the methods of Parnum & Gavrilov (2009). Radiometric 

corrections compensate the backscatter data for transmission 

loss (absorption and spreading) and insonification area  

(Blondel, 2009). Geometric corrections relate to the calculation 

of the X-Y position for each data point as follows: 

1.  Correcting position for offset between GPS antenna 

and location of the tow-fish 
2.  Smoothing GPS data with a Kalman filter 

3 .  Picking the range to the seafloor 

4.  Calculating the across track distance for each sample 

accounting for tilt  of SSS beam (assuming a flat 

bottom). 

5 .  Correct position for heading, pitch and roll, which are 

recorded from sensors in the tow-fish 

Figure 2 depicts one example of starboard sides of the SSS 

mosaics used in this study. The image contains several riverbed 

features such as tree branches and changes in riverbed 

topography. As the transducers are tilted 20° from the vertical, 

there is no data collected directly below the tow-fish. Hence, 

there is a gap in the middle of the image. The image also has 

acoustic noise outside the riverbank, shown on the starboard 

side in Figure 2, which needs to be removed by masking it  out 

using a polygon. 

 

 

3.  METHO DO LO GY 
 

3.1 Feature Extraction and Textural Analysis  
 

In SSS images, different types of seabed are represented by 

textured regions (Lianantonakis & Petillot, 2007; Shang & 

Brown, 1992). For this study, we have used first -order and 

second-order textures. First-order texture analysis uses a  

statistical analysis of the grey value, or digital number (DN), in 

its calculations. The second-order texture analysis method is 

described by the grey level co-occurrence matrix (GLCM) 

(Haralick et al., 1973). In this study, the textural analysis was 

performed by deriving nine textural features via use of the 
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moving window method. The textural features consisted of five 

first-order textures (Standard Deviation, Mean, Skewness,  

Kurtosis and Range) and four second-order GLCM textures 

(Homogeneity, Contrast, Correlation and Energy). 
 

 
Figure 2. SSS mosaic and some riverbed substrates used in the 

textural and histogram analysis. 

 

It  was found that setting the direction (angle) for the GLCM 

calculations to an angle of “0” created sufficient results for the 

calculations. It  meant that the calculation would only consider  

its horizontally adjacent pixel to the direct right of each pixel. 

The window dimension chosen to calculate these textural 

features plays a crucial role in producing the resulting image 

(Warner, 2011). The selection of window dimension should 

consider the scale of the textures or objects to be classified 

(Zhang, 2001). A small window size will maintain the edges of 

features but produce a less stable texture and plenty of mess, 

whereas a large windo w size will provide sufficient texture 

features but obscure the edges (Warner, 2011; Hamilton, 2015). 

Although for remote sensing, in general, a small window size (3 

× 3, 5 × 5 or 7 × 7) is used (Zhang, 2001; Jensen, 2014), some 

studies in un derwater applications have used larger windo w 

sizes (e.g. 19 x 19 pixels) (Hamilton, 2015). For our method 

several different windo w sizes (3, 5, 9 and 15) were used to 

examine the most appropriate size for the textural analysis.  

3.2 Classification 
 

This study uses three classes: ‘flat’, ‘ripple’ and ‘tree’, as 

identified by an expert. In this study, “flat” is defined an area of 

flat riverbed with no epi-benthic structure (e.g. trees) present; 

“ripple” is an area of topographic change in the riverbed (e.g.  

sand waves, scour, a rise up to a riverbank) but with no epi- 

benthic structure; and, “tree” is the presence of epi-benthic 

structure (e.g. tree branches). The training data images were 

obtained by masking and clipping the mosaic image. 

3.2.1  Support Vector Machine (SVM) 

SVM is a binary classifier that aims to separate data into classes 

by fitt ing an optimal hyperplane in the feature space separating 

all training data points from the two classes (Foody & Mathur, 

2006; Liu et al., 2015). Data points that are located close to the 

hyperplane are used to define the hyperplane (Foody & Mathur, 

2006). While a number of hyperplanes will be able to separate 

the classes, the most optimal hyperplane will be chosen with the 

maximum margin (Foody & Mathur, 2006). When the training 

data are not dissociable linearly, the feature space is 

transformed into a higher feature space until the two classes 

become linearly separate. This transformation is not required 

explicitly as the so-called ‘kernel trick’ is applied.  The 

Gaussian kernel can be chosen as an alternative to the linear 

kernel and is suitable for the non-linear decision surface (Foody 

& Mathur, 2006). Thus, additional parameters in Gaussian  

kernel, the magnitude of C and parameter γ (indicating the 

smoothness of this kernel) have to be trained. In the training 

phase, the cross-validation is used to reduce the subjectivity 

setting in SVM parameters such as the magnitude of C and γ 

(gamma) and to stop a SVM from overfitting (Foody & Mathur, 

2006; Hsu et al., 2008). Tuning of hyperparameters in SVM is a  

crucial step that can have a significant effect and influence the 

classification (prediction) accuracy (Bergstra et  al., 2015; 

Duarte & Wainer, 2017). Hyperparameter optimisation is used 

to find the best configuration variables for a training algorithm 

so that the algorithm can obtain an optimal result (Bergstra et 

al., 2015). 

Afterwards, when applying the model to a new set of data that 

has to be classified (e.g. an image), the SVM only checks on 

which site of the hyperplane the new data sample is located, 

based on the predictors (features) that are used. 

3.2.2  Decision Tree (DT) 

A Decision Tree predicts or classifies the classes based on the 

predictor or training data. Initially, an adequate number of 

training data needs to be provided and constructed in a vector in 

which each entry represents an attribute. Those attributes 

represented a class (Loh & Shih, 1997; Tehrany et al., 2013; 

Jensen, 2014). Afterwards, the data is split  into subsets 

(consisting of leaves (representing classes), nodes (representing 

the attribute of the classified data) and arcs (representing 

alternative attribute values)) based on the attributes, parameters 

or criteria that were used. A Decision Tree examines the data 

from the top node or root node and splits data based on two 

attributes (Loh & Shih, 1997). The growing and defining of the 

trees can be controlled using several parameters, such as the 

maximal number of decision splits including branch nodes, the 

minimal number of leaf nodes in the classifier, the minimal 

number of branch nodes in the classifier, the approach to split 

the data, and the number of predictors to select at random for 

each split. Decision tree also applies hyperparameters to define 

the internal nodes of the tree, define the criteria of splitt ing the 

branches, and the optimising the tree during the training 

(Bergstra et al., 2015). The DT algorithm usually also offers to 

use manual or auto (all) optimise hyperparameter methods. 

After all of the criteria have been achieved in splitt ing the data 

samples and the full tree has been reached, this information is 

saved in the DT model. The cross-validation method was used 

to evaluate the model’s performance in making predictions in 

the classifications and to avoid overfitt ing of the model. The 

classification error score was calculated to examine the quality 

of the training. 

After the training when applying the model to a new set of data, 

the DT will check the data based on each criterion and assign  

the data to a class based on the criterion. 

3.2.3  Post-classification Filtering 

In pixel-based classification, it  is common that the classified 

image will  contain a large amount of noise and speckle, 

commonly called “salt  and pepper noise” (Haack, 2007). In 

order to remove such noise, a median filter (low-pass filter) was 

employed, as this filter has been demonstrated to be effective in 

eliminating the speckles and smoothing the image. Although it 

can produce more blur, this filter generally will maintain the 

edge pixels of the image and preserve important textural 
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information. Due to the results of previous studies (Herold & 

Haack, 2006; Haack, 2007; Wesselink et al., 2017), the 5 x 5 

win dow size of the Median filter was chosen for the final 

mosaic classification. 

3.2.4  Accuracy Assessment 

In order to perform the accuracy assessment using error 

matrices, referenced or ground-truth points are required so that 

they can be compared with the approach’s classified points 

(pixels) (Lillesand et al., 2015; Miandad, 2018). Expert 

knowledge was utilised to extract the required reference data as 

in field date could not be collected. A point file was created in 

which a number of well-distributed reference points (pixels) 

together with their class labels are defined (27 samples for the 

“flat”, 36 samples for the “ripple”, and 34 samples for the “tree” 

class).. Afterwards, the pixel values of the classified image 

associated to the location of each reference point, were 

extracted and used to verify the reference point at this location. 

Based on this information, the accuracy assessment metrics 

including user’s accuracy, producer’s accuracy, overall 

accuracy and kappa coefficient were calculated. 

 

4.  EVALUATIO N 
 

4.1  Textural  Features 
 

Different moving win dow sizes were examined (7x7, 11x11, 

19x19 and 31x31 pixels) to create the texture images and results 

show that a 19x19 pixels of windo w produces the best result for 

the texture analysis. After the texture images had been created,  

a histogram analysis was performed to investigate the most 

appropriate texture variables that could be used to distinguish  

between each object in the image (i.e. with an apparent gap 

between each object’s histogram). The choice of textural 

variables used in the classification was based on how well the 

variables could distinguish between the objects’ classes. 

Results indicate that the Standard Deviation, Mean, Skewness,  

Range, Homogeneity, Contrast and Correlation variables are 

able to clearly separate between ‘tree’ and ‘ripple’ in their 

histograms. The ‘ripple’ feature tends to have a similar 

histogram to the ‘tree’ feature. Thus, finding variables that are 

suitable for distinguishing bet ween ‘tree’ and ‘ripple’ features is 

more challenging. 
 

 
Figure 3: Histograms of Correlation (a), Standard Deviation (b) 

and Kurtosis (c). 

In addition to the texture selection, the predictor importance 

estimation (Bolon-Canedo and Alonso-Betanzos, 2018) also 

was conducted to obtain the most suitable texture variables for 

the classification. The predictor importance computes the 

estimation of important variables that contribute to the 

classifier. The result of predictor importance estimation shows 

that only three textures of those features can make a significant 

impact upon the classification. The Correlation, Standard 

Deviation and Kurtosis textures have the highest  predictor rates 

for classifying the three classes, with 0.0727, 0.0424 and 0.0166 

respectively. 

4.2  Support Vector Machine Classification 
 

The graphs in Figure 4 sho w training data plots of test data 

samples (coloured dots) and the support vectors of each class 

(coloured circles). Figure 4a and b show plots using the linear 

kernel combined with Correlation/Standard Deviation (a) and 

Correlation/Kurtosis texture features (b), the same features have 

been used in (c) and (d) but using a Gaussian kernel. For all 

graphs, it  can be seen that only the ‘flat’ class (red points) have 

a clear distinction from other classes. 
 

 

Figure 4. Feature plots using a linear kernel with 

Correlation/Standard Dev. (a) and Correlation/Kurtosis features 

(b), and (c)/(d) using the same features with a Gaussian kernel. 

 
For the remaining tests six combinations of the textural 

variables used in the SVM classification which are shown in 
Table 1. 

 C1 C2 C3 C4 C5 C6 

Standard Deviation X X X X X X 

Skewness X X X X   

Correlation X X X X X X 

Energy X X X X   

Mean X X X    

Homogeneity X X  X   

Contrast  X X X    

Range X      

Kurtosis    X X X 

Table 1: Overview of the five texture feature combinations 
(C1- C6) used during the classification. 

 
The result of textural variable combinations in SVM 

classification (Figure 5) are examined visually. It  can be seen 

that not all of the texture variables can produce an  optimal 

result in the SVM classification. The first experiment (Figure 

5(b)) shows that the use of all variables could not give a 

satisfactory visually classified image, with a huge 

misclassification of ‘flat’, ‘ripple’ and ‘tree’ classes. Similar  

results are shown in the second and third experiments (Figures 

5(c) and 5(d)) which produced misclassification results, 

particularly for the ‘flat’ class. In contrast, the fifth and sixth 

experiments (Figures 5(e) and 5(f)) show the most optimal 

results of texture variable selection for the SVM classification. 

Although the texture variables used in the latest  experiment  
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(combination 5) produced a good visually classified image, the 

classified image using only three variables (Correlation, 

Standard Deviation and Kurtosis – combination 6) shows a 

better and smoother result. For that reason, these three variables 

were chosen for the SVM classification and Decision Tree 

classification. 
 

 
Figure 5. Results of variable combinations in SVM 

classification: (a) Input image, (b) Combination 1, (c) 

Combination 2, (d) Combination 3, (e) Combination 4, (f) 
Combination 5. 

The second trial strategy attempted to examine the use of a 

Gaussian kernel for the SVM classification, using the textural 

features of combination 6. (Figure 6). It  can be noticed that 

linear kernel performs better, visually, than Gaussian kernel. 

The optimised hyperparameter function does not seem to have a 

significant effect upon the classification using linear kernel 

(Figure 6(c)). Similarly, optimised hyperparameter does not 

provide an opt imal result to the classification using Gaussian  

kernel and produces some clutter in the image. 
 

 
Figure 6. Using feature combination 6, the results of the SVM 

classification using: (a) linear kernel, (b) Gaussian kernel, (c) 

linear optimised Hyperparameter, and (d) Gaussian optimised 

Hyperparameter. 

4.3  Decision Tree Classification 
 

Next, a Decision Tree (DT) classification was performed using 

the features of combination 6 (Figure 7). It can be seen that the 

use of both auto-optimised hyperparameter and all-optimised 

hyperparameter options in the classification (Figure 7(c) and 

7(d)) produces similar results and has no significant effect on 

the classification, possibly due to the small number of splits 

(branches) of the tree used in the classification In general, the 

results show that the DT classifier performs better when 

classifying the flat area. However, there are misclassifications 

of this model when separating ‘ripple’ and ‘tree’ classes. 
 

 

Figure 7. Result of Decision Tree classification: (a) Original 

image, (b) Default option of DT, (c) DT with all-optimised 

hyperparameter, (d) DT with auto-Optimised hyperparameter. 

 
4.4  Comparison of classification results 

 

The final results of classification after post -classification 

filtering can be seen in Figure 8, which shows the results of the 

SVM using linear kernel, and Decision Tree. It  can be seen that 

the SVM classifiers produce a better visual result than Decision 

Tree. In the DT result, a huge number of ‘ripple’ areas were 

classified as ‘tree’. There are some speckles of ‘tree’ class in  

the ‘flat’ area in the SVM classification results, which can lead 

to misclassification of the ‘flat’ area. 

In addition to the visual inspection, a quantitative assessment 

was performed using an error matrices. The three classifiers 

(SVM linear kernel, SVM Gaussian kernel and Decision Trees) 

using three selected texture features of combination 6 

(Correlation, Standard Deviation and Kurtosis) were compared 

(Table 2). In general, all classifiers performed quite well in  

predicting all three classes. It can be seen from Table 2 that the 

SVM using linear kernel has the highest overall accuracy 

(77%), followed by Decision Tree and SVM using Gaussian 

kernel (73% and 60%, respectively). The kappa coefficient also 

shows a  similar trend. The highest kappa coefficient was 

achieved using a SVM classification with a linear kernel (0.62) 
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followed by the Decision Tree and SVM classifier usin g 

Gaussian kernel (0.59 and 0.39, respectively). The kappa 

coefficients for all of the classifiers show a moderate agreement 

rate between the classified classes and the reference classes. 

However, the SVM using linear kernel has the best performance 

among all classifiers. 

 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
Figure 8: Final classified images: (top) SVM using Gaussian  

kernel, and (bottom) Decision Tree. 
 

 
 

 
 

 
 

Table 2: Results of overall accuracy and kappa coefficient  

5.  CO NCLUSION 
 

This study attempted to examine the use of texture feature 

extraction from SSS imagery and uses them in two supervised 

machine learning classification approaches: Support Vector 

Machine (SVM) and Decision Tree (DT). Of the nine texture 

parameters tested (Standard Deviation, Mean, Skewness,  

Kurtosis, Range, Homogeneity, Contrast, Correlation and 

Energy), the best performing ones were Correlation, Standard 

Deviation and Kurtosis. 

Two SVM classifiers, one using a linear kernel and one using a 

Gaussian kernel, along with a DT classifier were performed 

using selected textural features. Accuracy assessment of all 

classifiers showed that SVM using a linear kernel achieved the 

best overall accuracy and kappa coefficient (77% and 0.62), 

followed by Decision Tree (73% and 0.59) and SVM using a  

Gaussian kernel (60% and 0.39). Although all classifiers 

performed well in classifying the ‘flat’ area, all classifiers 

performed at a lower accuracy rate in classifying the ‘tree’ class 

than the ‘ripple’ class. In addition, SVM using a linear kernel 

also indicated a relatively stable performance when classifying 

all classes. Conversely, the performance of Decision Tree 

showed fluctuations in both producer’s accuracy and user’s 

accuracy, notably showing an increasing percentage in  

detecting ‘ripple’ for user accuracy and a decreasing percentage 

in classifying the ‘tree class’. Additionally, SVM using a  

Gaussian kernel seems not to be suitable for use in this 

classification and produces the lowest accuracy among all 

classifiers, particularly in predicting ‘ripple’ and ‘tree’ classes. 

This study also revealed that SVM has a more superior ability  

to be used with small number s of training data. However, a 

more creditable result could be achieved by applying the same 

methods in a different study site and by obtaining the training 

samples and ground reference samples directly in that study  

site. 

Based on the challenging environment in future research we  

aim to focus on using advanced textural features. For instance, 

we want to investigate if the first  layers of a deep architecture 

(such as convolutional neural networks) will generate feature 

which improve the classification results when applying a SVM 

classifier. 
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