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ABSTRACT: 

A miniaturised, high resolution visible and long wave infrared (LWIR) sensor was carried onboard an unmanned aerial vehicle to 

observe sections of radiata pine forests. The raw irradiance measurements were temporally pre-processed using a biologically-inspired 

vision (BIV) model to allow information within and across the images to be normalised. This permitted a larger, denser, and more 

tailored set of key points within the 2D image stacks to be corresponded, thereby improving 3D reconstructions of individual trees 

derived using structure from motion (SfM). The BIV model comprises multiple layers of processing derived from measured or assumed 

responses of the photoreceptor cells in the hoverfly. Its pre-processing expands the range of input signal obtained from the LWIR 

sensor and enhances foreground-background contrast. Morphological image processing techniques were also applied to enhance key 

image features before structure from motion is applied. The result allows structural properties of individual trees to be characterised in 

terms of their potential volume and quality; and contrasted with the point clouds obtained from the visible imagery that only depicts 

the tree canopies. 

1. INTRODUCTION

1.1 Motivation 

There is a need for forest management and conservation tools that 

improve workflow efficiency and safety through a combination 

of timely data acquisition and high spatio-temporal resolution. 

Such tools should also extend operational reach and access, as 

well as cut costs by reducing economic losses caused by incorrect 

decisions based on poor or erroneous data.  

In recent decades, conventional forest inventories at various 

geographical scales have been augmented by using remotely 

sensed data, such as airborne laser scanning (ALS) and 

photogrammetry techniques like structure from motion (SfM) 

(Kwak et al, 2007; Chen et al, 2006; Wallace et al, 2015; Gong 

et al 2002). High resolution point clouds may also be obtained 

using sensors carried onboard unmanned aerial vehicles (UAVs); 

and the data obtained from such approaches examined to 

morphologically classify the properties and quality of individual 

trees using shape, structure, and intensity features. Such 

approaches are frequently augmented with multi- or 

hyperspectral sensing observations. 

The morphometric information obtained has the potential to serve 

many forest applications (Strigul, 2008; 2012), especially the 

retrieval of tree quality for planning silvicultural activities and 

cutting/thinning regimes. Furthermore, from an ecological 

standpoint, such techniques offer valuable capabilities for 

monitoring forest regeneration, quantitative analysis of forest 

structure and dynamics, and evaluation of forest damage. 

While still in their operational infancy, these non-invasive UAV-

based techniques offer the potential for biophysical attributes 

such as tree density, and tree characteristics such as height, basal 
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area, stem volume, and crown area to be derived or modelled with 

high accuracy. Forests, however, due to their heterogeneity and 

density, are often difficult to observe and assess from the air: they 

are usually vast and not easily accessible, with tree species 

varying in shape and size. Moreover, the image capture systems 

have to deal with very challenging outdoor environments where 

lighting and contrast can vary over six orders of magnitude, and 

glare and strong shadow is detrimental to their performance.  

1.2 Long wave infrared sensing of radiata pine 

Although energy exchange takes place throughout an entire 

volume of forest, the main components occur via a plants’ leaves, 

or in the case of radiata pine, via their needles. The stomata, 

which are microscopic cells beneath the surface of the needles, 

exchange water vapour, carbon dioxide, and oxygen with the 

atmosphere. This has a cooling effect as substantial energy is 

required to convert liquid water to water vapour. Moreover, as 

radiata pine do not transpire in the same way, they are typically 

warmer than the needles. 

It is well-known that the intensity of long wave infrared (LWIR) 

radiation emitted by objects is mainly a function of their 

temperature. As a result, it is used extensively for multiple 

purposes in medical, engineering, building and remote sensing 

applications; and it is well-suited for observing plants whose 

components exhibit differing thermal structures and such 

techniques have been extensively reviewed by (Jones, 2004).  

The total radiation received by an LWIR sensor, 𝐼𝑡𝑜𝑡, comes from

three sources: the emission of the target object, 𝐼𝑡𝑔𝑡, the emission

reflected by the environment and the target object, 𝐼𝑟𝑒𝑓, and the

emission of the atmosphere, 𝐼𝑎𝑡𝑚 such that 𝐼𝑡𝑜𝑡 = 𝐼𝑡𝑔𝑡 + 𝐼𝑟𝑒𝑓 +

𝐼𝑎𝑡𝑚. Typically, in order to compute each of these components
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accurately, a priori knowledge or careful measurement of a 

target’s emissivity is required. Atmospheric temperatures and the 

amount of energy reflected by the environment must also be 

determined (Usamentiaga et al., 2014). Undertaking such 

activities in forest environments is complex and fraught with 

difficulty.  

 

However, as we are not concerned with measuring foliage or 

stem temperatures per se, we do not need to determine 𝐼𝑡𝑔𝑡, 𝐼𝑟𝑒𝑓, 

or 𝐼𝑎𝑡𝑚 accurately. We can forego calibration procedures and use 

the sensor solely as a means to detect structures of interest, such 

as needles, which transpire, or trunks, which do not. We achieve 

this by simply ‘tuning’ the image processing appropriately. Thus, 

while any observed absolute or relative temperature differences 

of scenes may be biased, we do not concern ourselves with this 

as we are only interested in local (i.e. regional) image contrast.  

 

Nevertheless, along with the sensitivity, spatial, and thermal 

resolution of the LWIR sensor, the density and height of trees in 

the forest, density of foliage on individual trees, tree-camera 

geometry, and the prevailing meteorological conditions all play a 

part in determining the extent to which the tree trunks form a 

contrast against their background; and the precise nature and 

extent to which each of these has an impact on the result of what 

follows forms a component of an ongoing research program. 

 

 
Figure 1: Radiata pine observed in the visible (left) and LWIR 

(right) spectral bands 

An example of the comparable contrasts achievable is shown in 

Figure 1. This shows the same scene observed simultaneously by 

a 5MP oCam visible range camera (left) and an Infratherm P9640 

LWIR camera (right). Both sensors were carried onboard a 

Matrice 600 UAV at a height of about 30m above the tops of the 

trees, which at about 20m high. Tree separation is roughly 3m. 

 

 
Figure 2: Contrast variations within LWIR observations of 

radiata pine (the images were taken within 30s of each other) 

As the UAV overflies the forest circumstances and conditions 

continually alter. So, even if 𝐼𝑡𝑔𝑡 (effectively trunk temperature) 

does not change substantially, the reflected irradiance, 𝐼𝑟𝑒𝑓, and 

hence total irradiance, 𝐼𝑡𝑜𝑡, does. This results in significant 

variation in the perceived or brightness temperature, 𝑇𝐵 =

√𝜎𝐼𝑡𝑜𝑡
4

, where 𝜎 is Stefan’s constant, both within and across 
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images for the foreground (trunks and stems) as well as 

background (forest floor, canopy, etc.)—see Figure 2. 

As the overarching goal is to combine 2D imagery observed by 

the UAVs in a manner that permits the the 3-D structure of the 

scene to be estimated so that tree properties and quality may be 

assessed, the information within and across the images must be 

normalised so that potential key points can be accurately 

corresponded. To achieve this, and because we found that 

traditional morphological image processing techniques were 

inferior, we use a biologically-inspired vision (BIV) model 

(Brinkworth and O’Carroll, 2009). 

 

2. IMAGE PROCESSING APPROACH 

The BIV is a multi-stage signal processing pipeline derived from 

the hover-fly’s visual pathways. The class-leading capability of 

the model has been demonstrated in the fields of motion detection 

(Brinkworth et al., 2010), object identification (Dowley et al., 

2013), optical character recognition (Poursoltan, 2015), and 

dynamic range compression (Griffiths, 2018).  

 

In its real time implementation, the BIV model has been divided 

into processing stages based on the source neurology, grouped 

into the functional pipelines: pre-processing, motion estimation, 

and target isolation. The first and second stages of the pre-

processing pipeline are inspired by the photoreceptor cell (PRC) 

and lamina monopolar cell (LMC) found within biology. Due to 

its biologically-inspired nature the BIV model is incredibly 

tolerant to low-SNR environments (less than 0dB), where 

competing methods regularly fail. 

 

The PRC component simulates a per-pixel shutter, that performs 

spatially-invariant, pixel-wise intensity normalisation. This 

intelligently compresses scene dynamic range. Illumination 

effects—shadowing and highlights—are then removed via digital 

integration with adaptive low-pass filtering, enabling consistent 

representation of objects across multiple lighting scenarios. This 

multi-level adaptation results in an image with near equivalent 

signal quality across all pixels, irrespective of pixel intensity. 

However, this does remove any absolute reference to scene 

luminance, instead opting preserve and enhance local contrasts.  

 

The second stage of the pre-processing pipeline, the LMC, 

applies adaptive spatial-temporal filtering to reduce image 

redundancy. Spatially, this supresses regions with minor contrast 

via high pass and difference of Gaussian filters, while enhancing 

edges and features. Temporally, static pixels are supressed over 

time while image bandwidth is dedicated to dynamic pixels. The 

LMC high pass filters are leaky in design, and can thus be tuned 

to enhance or preserve spatial-temporal edges exclusively. 

 

2.1 Structure from motion  

Structure from motion (SfM) is then applied to the resulting 

image stack. SfM is extensively described elsewhere (Longuet-

Higgins, 1981, Furukawa and Ponce, 2010, Hartley, 1997) but 

essentially comprises two components: camera motion 

estimation and point cloud reconstruction.  

 

Initially, a sparse set of points are matched across the 2D image 

stack to find correspondences. Such features are typically 

extracted using algorithms such as SIFT (scale invariant feature 

transformation) (Lowe, 1999) and SURF (speeded up robust 

features) (Bay et al., 2008). The sequence of views are then 

iteratively processed to track a denser set of points across the 

views so that the pose of the camera can be established for each 

image set and—after the relevant coordinate transforms have 

been accommodated—a dense 3D reconstruction of the scene 

made. The process of estimating camera motion (and hence point 

cloud) is generally improved if camera pose is recorded during 

image capture and applied during SfM computations.  

 

 
Figure 3: Example of image normalisation and edge 

enhancement using the BIV model 

Over the period of this work we have used three sets of software 

for obtaining SfM point clouds: a proprietary approach written in 

MATLAB, Agisoft Photoscan, and Reality Capture. We have not 

formed a view as to whether any one product provides superior 
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performance, except that the commercial packages execute much 

more efficiently than the bespoke (‘home grown’) software. 

 

3. PRELIMINARY RESULTS  

The result of this non-linear, adaptive normalisation process is a 

3D, SfM-generated point cloud of tree trunks (Figure 4), which 

may be combined with point clouds of the canopy obtained from 

imagery taken of the same trees in the visible range (Figure 5). 

The LWIR combined with BIV processing thus offers access to 

tree properties such as volume, height, diameter, crown area, and 

stem density. The accuracy with which such attributes may be 

determined forms a part of an ongoing research program.  

 

 
Figure 4: 3D reconstruction of trees observed using LWIR and 

BIV pre-conditioning with SfM obtained using Agisoft software  

A quantitative analysis of the data is ongoing. A large number of 

trees were observed as part of this study and the LWIR and BIV 

processing appears able to identify the stems reliably. However, 

this does not always translate into good SfM data; and omission 

and commission errors resulting from the processing are yet to be 

quantified. Nevertheless, we found that without any BIV or other 

morphological pre-processing generation of the SfM point clouds 

representing the stem structures of the trees was vastly inferior. 

 

 
Figure 5: 3D reconstruction of trees observed using VIS with 

SfM obtained using software by Agisoft  

We have yet to determine the impact of tuning specific BIV 

model parameters on tree detection, and their relationship on SfM 

reconstruction. From our results, however, it can be concluded 

that the UAV-based LWIR measurements can be combined with 

the BIV technique and individual and stand morphometric 

parameters obtained for the density and type of pine forests 

observed during these experiments. The possibility of applying 

the BIV to the image stacks observed on the visible component 

of the spectrum is also being considered. 

 

 

4. SUMMARY  

Irradiance measurements in the 800 – 1200nm band were pre-

conditioned using a BIV model to allow information within and 

across the observed images to be normalised prior to application 

of SfM. This enables a more relevant set of key points within the 

2D image stacks to be corresponded, thereby improving the 3D 

reconstructions of individual tree properties.  

 

The BIV model offers greatest benefit in complex, low lit 

situations or those subject to rapid or unpredictable lighting 

changes. This typically occurs in the inner regions of densely 
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populated forests. The results allow structural properties of 

individual trees to be characterised in terms of their potential 

volume and quality; and aligned to and contrasted with the point 

clouds obtained from visible imagery gathered at the same time 

and that depicts the tree canopy. This has the potential to augment 

future research directed towards estimation of above ground 

biomass and stem volume. 
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