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ABSTRACT: 

 

Often disasters cause structural damages and produce rubble and debris, depending on their magnitude and type. The initial disaster 

response activity is evaluation of the damages, i.e. creation of a detailed damage estimation for different object types throughout the 

affected area. First responders and government stakeholders require the damage information to plan rescue operations and later on to 

guide the recovery process. Remote sensing, due to its agile data acquisition capability, synoptic coverage and low cost, has long 

been used as a vital tool to collect information after a disaster and conduct damage assessment. To detect damages from remote 

sensing imagery (both UAV and satellite images) structural rubble/debris has been employed as a proxy to detect damaged 

buildings/areas. However, disaster debris often includes vegetation, sediments and relocated personal property in addition to 

structural rubble, i.e. items that are wind- or waterborne and not necessarily associated with the closest building. Traditionally, land 

cover classification-based damage detection has been categorizing debris as damaged areas. However, in particular in waterborne 

disaster such as tsunamis or storm surges, vast areas end up being debris covered, effectively hindering actual building damage to be 

detected, and leading to an overestimation of damaged area. Therefore, to perform a precise damage assessment, and consequently 

recovery assessment that relies on a clear damage benchmark, it is crucial to separate actual structural rubble from ephemeral debris. 

In this study two approaches were investigated for two types of data (i.e., UAV images, and multi-temporal satellite images). To do 

so, three textural analysis, i.e., Gabor filters, Local Binary Pattern (LBP), and Histogram of the Oriented Gradients (HOG), were 

implemented on mosaic UAV images, and the relation between debris type and their time of removal was investigated using very 

high-resolution satellite images. The results showed that the HOG features, among other texture features, have the potential to be 

used for debris identification. In addition, multi-temporal satellite image analysis showed that debris removal time needs to be 

investigated using daily images, because the removal time of debris may change based on the type of disaster and its location.  

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Building/structural damage assessment is a crucial task at the 

first stage for post-disaster response phase by supporting rescue 

operations, and then recovery phase by providing key 

information to support governments and decision makers 

planning for reconstructions.  

Remote sensing has been demonstrated as an essential and 

efficient tool for a rapid damage assessment after a disaster 

(Brunner et al. 2010). In addition, advances in computer vision 

and photogrammetry allow scientists to develop complicated 

but advanced methods. Several studies were conducted for 

damage assessment using remote sensing data such as UAV 

(Cotrufo et al. 2018; Galarreta et al. 2015; Vetrivel et al. 2017; 

Vetrivel et al. 2016) and satellite images (Duarte et al. 2018b; 

Gillespie et al. 2007; Joshi et al. 2017). Most of them are based 

on the assumption that the urban disaster debris belongs to 

building rubbles, and the presence of the debris surrounding 

and inside/on the buildings has been used as a proxy to extract 

damage ratio (Kerle and Hoffman 2013). For example, 

Galarreta et al. (2015) used rubble piles as a damage feature to 

identify the damage ratio to the buildings from 3D point clouds 

derived from UAV images. Vetrivel et al. (2015) detected 

rubble piles/debris around/on/inside buildings in addition to 

gaps to extract damaged regions of the structures. In another 

study, Vetrivel et al. (2016) developed a method to detect 

building damage corresponding to debris, rubble piles and 

heavy spalling buildings. In addition, Ural et al. (2011) 

developed a method for larger urban area damage extraction 

using very high-resolution satellite images and LiDAR data and 

showed the efficiency of their method in extracting damaged 

buildings and their footprint. For a precise damage detection 

(Duarte et al. 2018a; Duarte et al. 2018b) fused satellite and 

UAV images using a CNN-based approach and improved the 

accuracy of the rubble/debris-based damage identification 

results. All of the aforementioned studies extracted the building 

damages with a high success/accuracy rate via mainly extracting 

the rubble piles/debris. However, disaster debris often 

incorporates sediments, vegetative debris, and personal property 

in addition to building materials/rubble, which is not necessarily 

belong to the closest building. For example, in a tsunami/storm 

surge scenario a large quantity of mixed debris can be washed 

up close to the intact buildings or a high-speed wind can rip 

roofs off houses and pluck tree fronds, and relocate them during 

the event. Furthermore, to do a post-disaster recovery 

assessment, damage assessment is needed as the first step to 

determine the damaged areas and ratios. Changes in land cover 

and land use of the areas were mostly used for damage and 

consequently recovery assessment of the areas (Ghaffarian et al. 

2018; Ishihara and Tadono 2017). Hence, land cover/use 

classification/change detection of post-disaster satellite images 

the debris class is mostly used as an indicator/proxy of the 

damaged building and roads/area (Ghaffarian et al. 2018). For 

example, land cover-based change detection derived from high-

resolution satellite images was used for recovery assessment by 

Brown et al. (2010); Brown et al. (2008). They showed the 
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potential of using land cover change monitoring from satellite 

images in large area damage assessment and recovery mapping. 

In another study, Sheykhmousa et al. (2018) studied the land 

cover and land use changes for recovery assessment using very 

high-resolution satellite imagers and conducted a land cover 

and land use assessments for a few days after a disaster. They 

demonstrated that the remobilized debris in the entire area 

caused inaccuracies in land cover and land use classification 

results. Land cover and land use classification of the damaged 

area, particularly in water-related disasters, are prone to 

overestimation due to washed-up debris that may hinder the 

intact road and structures and also lead to overestimation of the 

post-disaster damaged area/ratio. Hence, identification of the 

disaster debris types is critical for precise post-disaster damage 

and consequently recovery assessments from both UAV and 

satellite images. 

In this study, we aim to address the challenge of post-disaster 

debris identification by investigating the potential of the 

UAV/drone images and multi-temporal very high-resolution 

satellite images acquired some days, weeks and months after a 

disaster to distinguish between quasi-permanent debris (e.g., 

rubble related to building materials) and ephemeral materials 

that get continuously remobilized (e.g. flotsam deposited by 

flood/storm surge water, and wind-blown vegetation matter 

such as palm fronds).  

 

2. METHODOLOGY 

Two distinct approaches are proposed in this paper to identify 

the debris types for after disaster situation. UAV images due to 

providing very high-resolution images can contribute to the 

identification of the disaster debris types. Thus, we conducted 

textural analysis using the UAV images to compare areas with 

quasi-permanent debris and ephemeral materials and figure out 

the most informative ones to distinguish them. In the second 

approach, the idea of that the ephemeral materials can be 

collected much earlier than the structural debris is investigated 

to identify the debris types from multi-temporal satellite images.  

 

2.1 Textural analysis 

In order to distinguish the quasi-permanent structural rubble 

from other more remobilized debris from UAV images three 

textural analysis were investigated, i.e. Local Binary Patterns 

(LBPs), Gabor features, and Histogram of the Oriented 

Gradients (HOG).  

 

I. Texture features (LBPs and Gabor features) 

 

In general, image-based textural features are extracted using two 

approaches; statistical-based and signal processing-based 

approaches. Statistical methods make use of statistical relations 

of the spatial distribution of gray-level brightness values within 

the image. Currently, gray level co-occurrence matrix (GLCM) 

is one of the well-known statistical-based methods for textural 

analysis, which is also used as a basis for other advanced 

textural methods (e.g., Local Binary Pattern). GLCM features 

are used for different remote sensing application such as land 

use classification (Kabir et al. 2010; Pacifici et al. 2009), slum 

area detection (Kuffer et al. 2016b), built-up area extraction 

(Pesaresi et al. 2008), and high resolution satellite image 

analysis (Zhang et al. 2017). GLCM-based Local Binary 

Patterns (LBP) have been indicated as one of the most useful 

and powerful texture analysing for high-resolution remote 

sensing images due to their computational simplicity and 

discriminative power (Gevaert et al. 2016; Kuffer et al. 2016a; 

Mboga et al. 2017).  
GLCM features (e.g., entropy, mean, correlation, homogeneity) 

are computed based on the occurrence of a pair of grey-level 

pixels in an image in predefined directions (Rao et al. 2002). 

Local Binary Pattern (LBP) features (Ojala et al. 2002) are 

computed based on a selected number of neighboring pixels (N) 

Figure 1. a) Track of Typhoon Haiyan over the Philippines, b-c) Overview of Tacloban city. 1-5) The selected UAV images for one week after 

disaster from the study area. 
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at a defined distance (d) from the central pixel, which is 

rotationally invariant. LBPs are developed to identify uniform 

features, such as corners and edges. In this study, LBP features 

were extracted with N= 8 and d= 16 from UAV images. 

Signal processing-based texture extraction approaches cut up 

image data into different frequency components [ref], and use 

frequency information of the signals in addition to spatial 

characteristics of the selected image. One of the well-known, 

such textural analysis is a wavelet-based method (Arivazhagan 

et al. 2006). Wavelet-based texture features were also used for 

remote sensing applications (Vetrivel et al. 2017) and found to 

be superior to GLCM texture features in many applications 

including classification of remote sensing images (Ruiz et al. 

2004). Furthermore, wavelets and particularly one of its 

methods Gabor filters were used for damage assessment from 

remote sensing imagery (Radhika et al. 2012; Vetrivel et al. 

2016). Gabor filters/features, which is based on wavelets, have 

been indicated as a robust texture extraction method for damage 

detection (Arivazhagan et al. 2006; Vetrivel et al. 2015, 2016). 

Gabor features are computed using a set of filters, and each of 

which is specifically defined to carry out frequency information 

at a specific orientation. Gabor filters separate image regions 

based on spatial frequency and orientation. Detailed information 

about generation of the Gabor filters and their application are 

given by Arivazhagan et al. (2006). 

Both LBP and Gabor features are used in this study to 

investigate their usefulness in identifying debris types. 

 

II. Histogram of the Oriented Gradients (HOG) 

 

The HOG is a feature descriptor that is widely used in computer 

vision and remote sensing for object detection and classification 

(Dalal and Triggs 2005; Gao et al. 2013; Xiao et al. 2015; Xu 

and Liu 2016; Xu et al. 2016).  The HOG uses spatial 

distribution of the gradients in the image regions to measure the 

spatial variation of edge orientations within a region (Kobayashi 

et al. 2008), which is a crucial factor in defining/extracting the 

shape of an object (Dalal and Triggs 2005). To extract HOG 

features, the magnitude and angle of the gradient of pixels in the 

image are computed. Then the magnitude of the gradients is 

binned into a histogram according to their angle/orientation for 

each predefined image block/cell. After normalizing the results 

of all blocks, they are concatenated to generate the image based 

on the block size. Furthermore, feature vectors that represent 

the gradient orientation and magnitude of blocks can be 

computed from the histograms. The HOG feature vectors were 

computed in this study from UAV images to investigate their 

utility in identifying debris types. 

  

2.2 Multi-temporal analysis 

Since structural rubbles are supposed to be heavier than 

ephemeral debris, they should be removed easier, and thus 

earlier, than structural rubbles after a disaster. Hence, the 

temporal change of the debris deposits in the images are 

monitored using multi-temporal satellite images. Furthermore, 

since the size of debris range from very small to bigger objects 

in the images, very high-resolution satellite images with 0.5 

spatial resolution are employed.  

 

3. RESULTS AND DISCUSSIONS 

The proposed approaches were tested in Tacloban city, the 

Philippines, which hit by super Typhoon Haiyan on November 

2013. Since the Typhoon Haiyan also caused a storm surge 

during the event, which led to deposit washed-up debris in 

urban areas, it is suitable to examine the proposed approaches. 

Five different locations of the debris were selected from the 

urban area of the Tacloban to implement the proposed 

approaches and discuss the results (Fig.1). 

 

3.1 Textural analysis of UAV images 

Three textural methods (i.e., HOG, LBP and Gabor 

filters/magnitude) were implemented on the five selected UAV 

image regions. From the selected images #1 and #4 mostly 

include ephemeral debris, while the others mostly consist of the 

regions with quasi-permanent structural rubbles. 

The LBP and Gabor features are studied, and no significant 

difference between debris types are found. 

Figure 2 shows the results of the HOG textural analysis of the 

selected UAV images. Visual inspection of the results shows a 

slight difference between HOG of the ephemeral debris and 

quasi-structural rubble, while ephemeral debris has spread 

distribution of the gradient orientations (see HOG of images 1 

and 2). Structural rubbles due to containing bigger sized objects 

have less spread HOG distribution. However, visually 

inspection of the other textural results does not show a 

significant difference between debris types.  

 
Figure 2. 1-5) UAV images and their corresponding HOG vector results 

for the denoted regions. 

 

3.2 Multi-temporal analysis of satellite images 

Satellite images acquired by different platforms (e.g., GeoEye1, 

World_View2 and 3, and Pleiades satellite) for 2, 3, 5, 7 days, 

3, 4, 5 weeks and 2, 8 and 9 months after the disaster are 

analysed to detect debris changes and extract the relation of 

temporal changes with debris types in the area. 
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Figure 3 shows the satellite images for the selected area of 

Tacloban city. Considering the change in the debris area 

denoted at the images, we can see that most of the debris (on the 

road) was removed between the first week and 4 weeks after the 

disaster. However, remaining debris next to the road removed 5 

weeks after the disaster. Since most of the debris had been 

disappeared from week 4 in the images, cannot find any relation 

between the removal time of the debris, and more satellite 

images are needed to study the changes between the first week 

and 4 weeks after the disaster. 

 

4. CONCLUSIONS AND FUTURE WORK 

In this paper, two approaches are proposed and analysed for 

post-disaster type identification. Textural methods are studied 

for UAV images to test HOG, LBP and Gabor features in 

differentiating the quasi-permanent structural rubble and 

ephemeral debris. The results showed that HOG is the most 

effective feature; however, in the future to precisely investigate 

the efficiency of the features and their effectiveness in disaster 

debris type identification they should be followed by a 

classification method and conduct a quantitative comparison. In 

addition, using 3D point clouds derived from UAV images will 

help debris identification. Furthermore, the idea of that 

ephemeral debris due to containing light weighted debris can be 

removed earlier than structural rubble is investigated using 

multi-temporal satellite images. Based on the achieved results in 

this study and the used time intervals after the disaster, we did 

not find a strong relationship between the time of removal and 

debris type. However, it is demonstrated that in order to study 

this approach we need daily data/images, type of the structures, 

and other characteristics of the considered areas that can 

influence the debris removal time and types. Hence, in the 

future, this idea should be studied using daily data (e.g.,  daily 

drone imagery), and use classification methods to extract the 

disaster debris areas quantitatively. 
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