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ABSTRACT:

Building is a key component to the reconstructing of LoD3 city modelling. Compared to terrestrial view, airborne datasets have more
occlusions at street level but can cover larger area in the urban areas. With the popularity of the Deep Learning, many tasks in the field
of computer vision can be solved in easier and efficiency way. In this paper, we propose a method to apply deep neural networks to
building facade segmentation. In particular, the FC-DenseNet and the DeepLabV3+ algorithms are used to segment the building from
airborne images and get semantic information such as, wall, roof, balcony and opening area. The patch-wise segmentation is used in
the training and testing process in order to get information at pixel level. Different typologies of input have been considered: beside
the conventional 2D information (i.e. RGB image), we combined 2D information with 3D features extracted from dense image
matching point clouds to improve the performance of the segmentation. Results show that FC-DenseNet trained with 2D and 3D
features achieves the best result, IoU up to 64.41%, it increases 5.13% compared to the result of the same model trained without 3D

features.

1 Introduction

Due to the explosion of urbanization and the increase in
population in recent years, a new challenges has to be faced in
regard to the planning and environmental sustainability or urban
areas. To tackle these problems, the use of more detailed and
complete geographic information is mandatory. “Smart Cities”
aim at delivering smart and complete information thanks to
digital technologies. In this regard, the realization of 3D city
modeling allows to interoperate and share many data in an
efficient way. Different levels of city models can be then
generated (Dimopoulou, et al., 2014). City Geography Markup
Language (CityGML) is considered the standard for 3D city
modeling. In CityGML, building parts and accessories can be
classified into four levels-of-detail from LoD1 to LoD4 (Groger
& Pliimer, 2012). In LoDI, buildings are modelled in a
generalized way, like blocks. In LoD2, the roof shape of the
building is represented. LoD3 is a more detailed level, openings
(window, door) and detailed rood structures (chimney) are added
for buildings, and in LoD4, the interior (room) are represented
too. Currently, the low level (LoD1 and LoD2) can be generated
(almost) automatically, but this process is not feasible for LoD3.
Many details such as the building components cannot be reliably
extracted in an automated way and therefore they cannot be
automatically inserted into a 3D model.

The semantic segmentation of a building can be considered as ais
sub-problem of the automatic generation of virtual cities with
LOD3 models. The task of the building fagade segmentation is to
assign each pixel of human-made structures to a semantic label
such as window, balcony and door. However, manual delineation
over large urban areas is time-consuming. An automatic way for
semantic segmentation of building is the unique choice from a
practical point of view.

Early methods for building fagade segmentation were based on
an appropriate shape grammar (Gadde et al., 2018) following the
predefined architectural constraints (e.g. windows are of the same
size on the fagade and not placed randomly; doors can be found
on the first floor at street -level; the roof is above the top floor;
all balconies have the same dimensions, etc.). These rules can
reduce the errors of the segmentation result but they heavily rely
on the prior knowledge.

Machine learning is an efficient and automated method to parse
building. There are a few classifiers that can be applied to tackle
this task, for example, Support vector machine (SVM), RANSAC
(Boulaassal, et al., 2007), randomized decision forest (Yang &
Forstner, 2011). However, these algorithms typically return noisy
pixels in their segmentation results, due to the lack of
neighboring information (Rahmani, et al., 2017). Conditional
Random Field (CRF) (Lafferty, et al., 2001) is also a popular
method to refine the output of the classifier to improve the
accuracy of the result.

Recently, deep learning outperformed the traditional method
(SVM, RF) in terms of accuracy and robustness. Convolutional
Neural Networks (CNNs) have shown a good performance and
high efficiency in image recognition, object detection, semantic
segmentation. (Long, et al., 2015) proposed an end-to-end
network using fully  convolutional architecture-FCN
outperforming previous algorithms in the task of semantic
segmentation. Compared to the classical convolutional neural
networks, FCN replaces the final fully connected layer with a
convolutional layer and outputs a pixel-wise labeled image
instead of a classification score. FCN accepts arbitrarily sized
images as the input and recovers shrunken images after a series
of convolutional layers thanks to the deconvolutional layer
(Garcia-Garcia, et al., 2017). However, training models from the
beginning is a time-consuming work and cannot produce good
results with random initialization. Thus a common trend in the
segmentation is to apply transfer learning (Yosinski et al., 2014)
fine-tuning the pre-trained classification networks.

Building data can be captured from multiple platforms.
Compared to the terrestrial data, the airborne oblique imagery is
more productive in the urban area as it can cover larger areas and
it can acquire the same object from different images. Compared
to aerial nadir images many more details can be then acquired
and used to the further improve the generation of 3D models
(Xiao, et al., 2012). The cost of oblique images is also lower than
other terrestrial methods.

In this paper the use of FCN for facade segmentation is
investigated. In particular, two Deep Neural Networks, namely

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-35-2019 | © Authors 2019. CC BY 4.0 License.

35



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10-14 June 2019, Enschede, The Netherlands

Wall Roof

Opening Void

Balcony

Figure 1: Examples of our task, from left to right are Original image, Ground truth, Result from DenseNet trained with 2D and 3D

feature.

FC-DenseNet and DeepLabV3+ are adopted to parse buildings
from oblique images captured by airborne systems.

The contribution of the study is that the input of the network
includes not only 2D image information (RGB), but also point
clouds to provide extra 3D information (the third component of
the normal vector) for improving accuracy. For the training
process, weighted loss function is used to solve the problem of
imbalanced classes. We also use patch-wise segmentation in our
task to reconstruct the original image sizes and we choose the
maximum probability in the score map instead of their direct
combination to delineate the negative effect when reconstructing
from small patches to original images.

2  Related work

Many researches have been working on the facade detection and
classification. The aim of these works has been to estimate the
position and size of various structural (e.g., window, door, roof)
and non-structural elements (e.g., sky, road, building) exploiting
their shape or their appearance on the given images (Frohlich, et
al., 2010). The previous works can be classified into different
categories according to the data source: image-based (2D) and
laser-based (3D) algorithms. These can be then subdivided into
the airborne and the terrestrial according to the used platforms.

(Cohen et al.,, 2014) presented a method using dynamic
programming algorithm to praise the fagade of the building and
applying the hard-architectural constraints. Gadde et al., 2015)
have used the learning split grammars from annotated images to
perform the pixel-wise classification. In (Delmerico etal., 2011)
a method has been proposed using three main steps:
discriminative modelling, candidate plane detection through
PCA and RANSAC, and energy minimization of MRF potentials,
refining the result with the plane fitting. Martinovi¢ et al., 2012
shows a three layer architecture where the low-level information
is given by the semantic segmentation, middle-level is based on
a pairwise multi-label Markov Random Field (MRF) solved by a
graph-cut algorithm about objects in the facade, and top-level is
according to the architectural knowledge. Randomized decision
forest (RDF) is also a good classifier to classify the building
fagades. (Yang & Wolfgang, 2011) demonstrated an approach of
region-wise classification by RDF and local features refining the
result with the conditional random field (CRF). They trained a
RDF on the labelled data and split them by a decision tree
learning algorithm. (K. Rahmani et al., 2017) proposed a method
using a Structure Random Forest for fagade labelling and get a
good performance result on the ECP and Graz fagade datasets.
Fully connected CRFs can model long-range spatial

dependencies and make use of contextual information. Li &
Yang, 2016 used the fully connected CRF (all nodes are
connected in pairs) as the basic framework for the fagade parsing
task. They chose the trained Textonboost as the unary classifier
and obtained maximum posterior marginal (MPM) results by
filter-based mean-field approximation inference. The use of
oblique images is a way to capture multi-views of building
facades. In this regard, Tu et al., 2017 extract the feature
following local symmetrical and using a sliding window to
determine the location of the local symmetry feature point. Xiao
et al., 2012 make use of the oblique imagery with large tilt angle
to solve the problem of occlusions and get more detailed
information about the facade.

Recent years, deep learning becomes a popular method in the
field of computer vision. It has proven to have a good
performance for tasks like object detection, classification, and
segmentation. Many remote-sensing applications can be also
achieved using deep learning, such as hyperspectral image
analysis, interpretation of SAR images, interpretation of high-
resolution satellite images, multimodal data fusion, and 3D
reconstruction (Zhu et al., 2017). Kujtim Rahmani & Mayer,
2018 mainly introduced the Region Proposal Network (RPN)
based on a Convolutional neural network to generate the prior
information for the building elements, such as window, door,
balcony with their probability, and then put it into the Structured
Random Forest as the input.

(Long et al., 2015) proposed the first Fully Convolutional
Networks (FCN) that is an end-to-end deep neural network for
semantic segmentation (Figure 2). It makes dense predictions for
semantic segmentation using arbitrary size of the input by adding
up-sampling layers to restore the spatial resolution of the input.
A skip connection is also added to the networks. A CNN can be
converted into FCN by replacing the fully connected layers with
a 1 x1 size of convolutional layer. Therefore, the existing models
of CNNs can also be used into FCN. (Liu et al., 2017) applied
FCN into the 2D facade paring problem, they proposed a
symmetric regularization term and to train the neural network
with a novel loss function and boosting the performance with the
post-processing based on object detection. (L. C. Chen et al.,
2018) proposed an idea combined with the deep convolutional
neural networks based on ResNet and fully-connected
conditional random fields.

3 Methodology

The developed methodology can be divided in a sequence of
steps described in the following sub-sections.
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3.1 3D feature extraction

The third component of the normal vector is the 3D feature
involved in convolutional neural networks. This can tell whether
surfaces are horizontal, vertical or slanted. The normal vector is
derived from a cluster of neighboring points which can be
selected by different searching strategies and searching ranges.
Our work uses ‘K-nearest neighbors’ as the searching strategy
and pick 100 neighboring points to calculate the normal vector
for each point.

3.2 Feature combination

Our networks are based on 2D CNN architectures: the 3D feature
is therefore projected into image space and taken as the fourth
channel of the network input. The projection to oblique airborne
images is based on P-matrices which are obtained after dense
matching point cloud generation in the Pix4D software. During
the projection, one point can be associated with image patches of
different sizes: pixels within the same patch share the same 3D
feature. When multiple points are projected to the same patch, the
averaged feature value is assigned to the patch. In real
experiments, small patches leave voids in image space, while
large patches reduce the void percentage but, at the same time,
lead to coarse features that are insufficient to provide detailed
information. Half resolution point clouds are used in our
experiments. To keep the balance between void percentage and
details of information, the optimal patch size is set as 4 pixels by
4 pixels.

3.3 Patch-wise segmentation

In our task, our data have different resolutions. Due to the limited
memory of the GPU and effiency the patch-wise strategy has
been adopted to train our neural network. Compared to image
resizing, patch-wise segmentation can keep the contextual
information and keep the original shapes of images, without
any distortion. First, in the training process, the images will be
split y small patches (320 x 320). To get a better performance
of the border, we take 50% size of each patch as the overlapping
region to deal with the gap between adjacent images.

In the testing stage, the original images are then reconstructed
from small patches using a fusion strategy. The neural networks
give a proper probability distribution for each pixel by
softmax function. Where, e”i is the scores of the input in the
form of one-hot encode, i with the length equal to the number of
classes J . In this task J equals to 4, i=0,1,2,3.

eYi

Si = Zl_e}’j (1)

In the overlapping region, the probability of each pixel chooses
the maximum probability between two regions, s; and s, .

P(i) = argmax(sy, s3) 2
3.4 Imbalance class
Classes with fewer pixels are likely to cause the imbalance

problem during the training. In this paper, the weighted loss
function has been used to solve the imbalanced training.

Cross entropy loss is a common loss function that can be used in
segmentation tasks. Where y is the ground truth in the form of
one-hot encode and y refers to the prediction generated by the
last layer output. The length of K equals to the number of labels
(1,2,3..., k).
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Figure 2: The structure of FC-DenseNets from (Jegou et al., 2017).

The weighted loss function is shown in following, where W, is
the class weight computed by the number of pixels for each class
in training images. L is the cross-entropy loss.

Lweighted =L-W, “4)

Input

Layer

v

Output

Figure 3: Dense Block from (Jegou et al., 2017).

3.5 Networks

There are two main structures of models used for semantic
segmentation tasks in deep neural networks, namely spatial
pyramid pooling and encoder-decoder structure. The major
advantage of the first one is its capability to capture multi-scale
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Figure 4: From left to right a) Spatial pyramid structure, b) Encoder-Decoder structure, c) Encoder-Decoder with Atrous

convolution. (Chen et al., 2018).

information. In the following sub-sections, the network
architectures that we used in our task are introduced.

3.5.1 FC-DenseNets

Fully Convolutional DenseNets was proposed by (Jegou et al.,
2017), as shown in Figure 2. It is based on DenseNets (Huang et
al., 2017) and extended to deal with the problem of semantic
segmentation task by combining FCN with DenseNets. The goal
is to do the classification, also achieve the pixel-to-pixel
segmentation and keep the original image resolution at the same
time by adding the up-sampling path of the FCN. This network
contains less parameters and is not necessary to be pretrained on
large datasets.

The main feature of DenseNets is given by the use of Dense
Blocks. Figure 3 shows a Dense Block of 4 layers. Starting from
an input xowith m feature maps, after going through the first
layer, the output x; of dimension k is generated by applying
H; (x). The input of the next layer is from stacked features by a
concatenation ([xg, x1]) (Jegou et al., 2017).

3.5.2 DeepLabv3 plus

The main advantage of DeepLabv3 is that it can capture the
contextual information at multiple scales by applying a spatial
pyramid pooling module. However, there is a certain drawback
associated with the boundary of objects. Deeplabv3 plus, as
shown in Figure 4, improved the performance based on
DeepLabv3 (see the next section), by adding an encoder-decoder
structure that is able to obtain sharp object boundaries (Chen et
al., 2018). The Xception model had provided promising images
classification results. In DeepLabv3 plus, the author modified the
model and adapted it to semantic segmentation tasks, as the new
backbone to extract features. In the performed tests, ResNet101
has been used as backbone as used in DeepLabv3. Figure shows
the three different structures to capture multi-scale context.

ASPP — Atrous Spatial Pyramid Pooling

Atrous Spatial Pyramid Pooling was applied in DeepLabv3 to
capture contextual information in different scales with different
rates. It can compensate for the loss of information by using
pooling or convolution layers. In this regard, the conventional
stride pooling, although the main features are kept in the final
feature map, it loses the small detailed information, like
boundaries.

4  Experiments

4.1 Airborne datasets

The data is based on (Lin, et al. 2018) captured from Dortmund
city center on July 7th 2016, shown in Figure 5. The dataset
consists of multiple views images. The ground sampling distance
is 4.5cm for the oblique image. In this paper, 4 classes are
considered, roof, wall, balcony and opening (window and door).
The example of the ground truth in our task is shown in Figure 6.

Wall

Roof  Opening Void

Balcony

Figure 6: An example of the ground truth.

4.2 Region of Interest

The facades in each original image are in different scales. Then,
the facades are not rectified into vertical perspectivse, so there
will be some noise produced by the area surrounded the facade.
To improve the performance of result and train it in an efficiency
way, a smaller region of interest in correspondence of the fagade
is used as the input of networks before splitting it into patches.
An example is shown in the Figure 7.
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Figure 5: Dense matching point cloud of study area.

Figure 7: Region of Interest Selection.

4.3 Experiment setup

Due to the limited data, the data augmentation is used in our task
to increase the training data. The number of original training data
is 160 images. After splitting into patches, there are 1132 images
used for training. The framework of the networks is based on
(Seif, 2018). As already mentioned, ResNet is used as the back-
bone to extract features, using the ImageNet pretrained model.
Then FC-DenseNet and DeepLabV3+ are fine-tuned on our
dataset.

4.3.1 2D segmentation

The input of the networks in 2D segmentation only contains 3
channels (RGB). Several tests have been performed to define the
most proper configuration. In this regard, the data augmentation
has been adopted too. The horizontal flip has been used, reversing
the images horizontally. Rotation values were set to 20 degree
[ =20 20], randomly changing this value for each patch.
Brightness value was set to 0.2: this value refers to randomly
change the factor of brightness from 0 to 20%.

Data augmentation | Value

Horizontal flip True - horizontal

Rotation 20

Brightness 0.2

Table 1: Data augmentation in training process

The learning rate was set to 0.0001 in our task, and decay rate set
was 0.995 of original learning rate after each epoch to avoid
overfitting. Due to the limited memory of the resource small

batches are used in our training process. For Deep LabV3+, Batch
size is set less than 12, so we did not fine-tune the batch
normalization.

Parameter Value

Learning rate 0.0001

Decay rate 0.995

Batch size 4 (DenseNet) / 8 (Deeplab)
Epochs 80

Table 2: Parameters in training process

4.3.2 Combination of 2D and 3D features

The input of the networks in 2D was combined with 3D feature
in 4 channels, RGB and normal vector. The weights pretrained
on ImageNet used the initial 3 channels (RGB), while the extra
channel for normal vector was initialized with 0 values. The first
layer was modified into 3 X 3 X 4 X 64 instead of 3 X 3 X 3 X
64 to fit the 4 channels input. Comparing to the 2D segmentation,
the training strategy almost the same, but removes rotation from
the data augmentation and set epochs to be 100.

4.4 Accuracy assessment

To evaluate the performance of the segmentation result, there are
some metrics to be defined. Overall accuracy is the metric
evaluated for the whole image. IoU is a common way in dense
prediction tasks. We take the mean over the IoU of each
predefined class. In these equations, TP refers to true positives.
while FP refers to the false positive, FN refers to false negatives
and TN indicates the true negatives. The formulas of the used
metrics are reported below.

TP

Accuracyoperan = TP+FN )
IoU = —1 ©
TP+FP+FN

4.5 Results and discussion

42 complete images were used for testing before splitting into
patches. Some visualizations of results is shown in Figure 8. The
first row are the original images, while the second gives the
ground truth and the third shows the result from FC-DenseNet
trained with only 2D information. The fourth row shows the
result from DeepLabV3+ trained using only 2D information, the

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W13-35-2019 | © Authors 2019. CC BY 4.0 License.

39



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019
ISPRS Geospatial Week 2019, 10-14 June 2019, Enschede, The Netherlands

Wall Roof  Opening Void Balconv

Figure 8: First row: Original images. Second row: Ground truth. Third row: Results generated by FC-DenseNet. Fourth row:
Results generated by DeepLab. Fifth row: Results generated by FC-DenseNet 2D with 3D features. Sixth row: Results generated
by DeepLab 2D with 3D features.
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fifth row shows the result from FC-DenseNet trained with 2D and
3D feature, while the sixth row provides the result from
DeepLabV3+ trained with 2D and 3D features.

From the Table 3, it can be seen that the bet result is obtained by
FC-DenseNet trained with 2D and 3D features: it achieves
64.41% IoU and 91.30% accuracy. The second best is given by
DeepLab V3+ trained with 2D and 3D features and it obtains
62.16% IoU and 91.10% accuracy.

Compared to the only use of 2D information, the overall accuracy
and the IoU using 2D and 3D features increased for both
DeepLabV3+ (from 89.08% to 91.10%) and for FC-DenseNet,
(from 88.42% to 91.30%). In addition, the IoU of FC-DenseNet
improves more than 5%, while DeepLabV3+ achieves a less
extensive improvement (1% less improvement).

Results on roof in FC-DenseNet and DeepLabV3+ using all the
features are better than these two models only trained with 2D
information: the overall accuracy increased from 91.76% to
94.61% and 92.25% to 95.78% respectively.

In correspondence of walls, the model trained with 2D and 3D
feature worsens the model only using 2D information. The
classification of the openings using FC-DenseNet trained using
2D and 3D feature achieved the best performance (from 78.1%
to 92.89%). On the other hand, DeepLabV3+ gave opposite
results using the same typologies of features, decreasing from
81.25% to 65.42%. Results of balcony in FC-DenseNet get a little
improvement from 78.89% to 79.18% by adding 3D feature,
while the same configuration in DeepLabV3+ decreases 7.65%
than using the only 2D information. Mean accuracy of class in
FC-DenseNet improves 0.29% while decreases 4.99% in
DeepLabV3+.

Class 2D-FC 2D-DL. FC-23 DL-23
Roof 91.76  92.25 94.61  95.78
Wall 83.84 82.12 64.30  82.08
Opening 78.10  81.25 92.89 6542
Balcony 61.66  70.73 6493  63.08

Table 3: Results from four tests. 2D-FC refers to FC-
DenseNet used only 2D information. 2D-DL refers to
DeepLabV3+ used only 2D information. FC-23 represents
FC-DenseNet used 2D and 3D information. DL-23
represents DeepLabV3+ used 2D and 3D information.

2D-FC
‘ 59.28  62.09

2D-DL  FC-23
64.41

DL-23
62.16

IoU

Table 4: mean IoU for different models.

Overall, the achieved results indicate that model predictions get
benefits from 3D information and achieve the best performance.
With RGB input, there are some confusions between roof and
wall. Adding 3D features, as it can be seen from Figure 8,
reduces the misclassified pixels: the normal vector can help the
network to easily distinguish between these two classes and to
solve the confusion by adding extra vertical spatial information
to. On the other hand, the normal vector has limited effects on
classifying other classes where the geometric information
provided by 3D data is less discriminative in the classification

process: in this case, the performance in the classification of
opening and balconies can slightly decrease. These trends have
been confirmed in both networks. The results provided by
architectures provide similar results in terms of accuracy.

5  Conclusion and further work

In this paper, we applied two neural networks, FC-DenseNet and
DeepLabV3+ to segment buildings captured from the airborne
oblique camera system. Four classes have been considered in our
task: roof, wall, opening area, and balcony. Instead of traditional
terrestrial data, airborne data cover larger area to be investigated
such as roofs that are difficult to be covered in terrestrial datasets.
In our task, we not only consider conventional 2D information,
but also the training data combined the 2D information with a 3D
feature (the third component of the normal vector) into the
networks. The results indicate that 3D features can correct
misclassified pixels by providing extra spatial information, such
as confusions between wall and roof. The IoU and accuracy of in
FC-DenseNet and DeepLabV3+ all increase, and FC-DenseNet
trained with 2D combined 3D feature get the best result with
91.30% accuracy and 64.41% IoU.

In the further work, other 3D features can be involved in the
training process to provide more spatial information to improve
the performance of other classes. Also, CRF can be applied as the
post-processing to refine the result. Furthermore, the limitation
of this work is the limited memory of resource, we can implement
more advanced neural networks and test large resolution of
images on the semantic segmentation of buildings.
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