
HIGH THROUGHPUT PHENOTYPING OF PHYSIOLOGICAL GROWTH DYNAMICS 
FROM UAS-BASED 3D MODELING IN SOYBEAN 

 
 

Monica Herrero-Huerta *, 1 and Katy M. Rainey 1 
 

1 Department of Agronomy, Purdue University, IN 47906, USA – (mherrero, krainey@purdue.edu) 
 
 

KEY WORDS: Unmanned Aerial System (UAS), Photogrammetry, High-Throughput Phenotyping, 3D model, Soybean, 
Physiological growth, Structure from Motion (SfM).  

 
 
ABSTRACT: 
 
Nowadays, an essential tool to improve the efficiency of crop genetics is automated, precise and cost-effective phenotyping of the 
plants. The aim of this study is to generate a methodology for high throughput phenotyping the physiological growth dynamics of 
soybeans by UAS-based 3D modelling. During the 2018 growing season, a soybean experiment was performed at the Agronomy 
Center for Research and Education (ACRE) in West-Lafayette (Indiana, USA). Periodic images were acquired by G9X Canon compact 
digital camera on board senseFly eBee. The study area is reconstructed in 3D by Image-based modelling. Algorithms and techniques 
were combined to analyse growth dynamics of the crop via height variations and to quantify biomass. Results provide practical 
information for the selection of phenotypes for breeding.  

 
 

1. INTRODUCTION 

Estimating biophysical plant variables and non-destructive 
characterization of quantitative traits with high accuracy and 
cost-effectiveness is imperative for high-throughput 
phenotyping in precision agriculture (Furbank and Tester, 
2011). Recent advances in sensor technology open great 
opportunities to UAS (Unnamed Aerial Systems) as a low-cost 
platform to derive high throughput and precise quantitative 
phenotyping datasets (Araus et al., 2018). In this context, due 
to the increasing use of UAS (Haghighattalab et al., 2016), the 
development of software tools and methodologies to 
automatically phenotype crops is urgently required. Regarding 
photogrammetric sensors on board UAS, the application of 
digital image analysis to cover plant height estimation 
(Malambo et al., 2018), yield estimation (Roth and Streit, 
2018), early emergence, senescence rate (Hassan et al., 2018), 
disease detection (Whalley and Shanmuganathan, 2013) and 
quality evaluation (Herrero-Huerta et al., 2019). Using active 
optical sensors, Light Detection and Ranging (LiDAR) is 
capable of providing 3D data including height and vegetation 
density areas on canopy structure (Herrero-Huerta et al., 
2016). It has been used to derive canopy height, fractional 
cover and above ground biomass (Wallace et al., 2012). 
Plant height is a crucial variable connected to stability, yield 
potential and lodging resistance. This variable has been 
assessed by UAS as a Structure from Motion (SfM), obtaining 
high correlations with ground reference measurements for 
barley (Bendig et al., 2014), wheat (Khan et al.,2018), poppy 
(Iqbal et al., 2017) and sorghum (Hu et al., 2018). 
In this research, senseFly eBee was chosen as a UAS, 
providing  great flexibility and speed to accomplish mapping 
at high spatial and temporal resolution using an onboard 
Canon G9X compact digital camera, working in the visible 
spectrum (Red-Green-Blue).The images are processed 
through a fully automatic photogrammetric pipeline by the 
computation of the view of each image and, subsequently, the 
generation of a dense and scaled 3D model of the crop. Once 
temporal point clouds are generated, algorithms were 
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employed to analyse the growth dynamics of the crop via 
height variations. In addition, mesh calculations were applied 
to quantify biomass with a high level of resolution. The main 
output of this workflow will allow the selection of phenotypes 
for practical breeding. 
The paper is organized as follow: after this brief 
introduction, the materials and methods are explained. 
Consequently, the experimental results reached are 
discussed. To end with, the conclusions and further studies 
are summarized. 
 

2. MATERIALS AND METHODS 

2.1 Materials 

 The materials used for the data acquisition are described 
below:  

• A GNSS device from TopCon to georeference the 
Ground Control Points (GCP).  

• Canon PowerShot G9 X Digital Camera as a 
passive sensor for image acquisition, with the 
following technical specifications: 
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Canon G9 X 

Optical Sensor Type BSI-CMOS 
Optical Sensor Size 16 mm 
Image Size 5742*3648 pixels 
Optical Sensor Resolution 20.2 MPixels 

 
Table 1. Technical specifications of the photographic sensor 

• The senseFly eBee, designed as a fixed wing 
UAV for application in precision agriculture 
with incorporated GPS, IMU and 
magnetometer. It has a weight of 700 g and a 
payload of 150 g. The digital camera is 
controlled by the senseFly eBee autopilot 
during the flight.  
 

2.2 Methods 

2.2.1 Flight planning 

Proper flight planning is crucial to guarantee the imagery 
acquisition reaches the theoretical parameters, produces 
high quality images, achieves optimization of existing 
resources as well as minimizes the capture time.   
Once the study area is defined, Sensefly software 
determines the flight strips, the camera orientation and the 
image acquisition regarding the restricted forward and 
side overlap and guaranteeing the scale by the required 
GSD (Ground Sample Distance). The flight planning is 
illustrated in Figure 1, where the green line is the UAS 
trajectory, the red points are the image acquisition shots 
and the red rectangle is the study area. The parameters that 
define image capture are determined during flight 
execution depending on the light conditions and the wind 
and flight speed. 
 

 
Figure 1: Flight planning  

 
2.2.2 Photogrammetric pipeline 

 
Firstly, a topographic survey is performed that will allow 
absolute georeferencing and scale the model. For this 
purpose, accuracy targets were placed along the study 
area, staying detectable in the acquired images. Once the 
aerial imagery had been captured, a standard 
photogrammetric pipeline is performed by image based 
modelling techniques. Each dataset is handled by a 
framework based on camera calibration (Remondino and 
Fraser, 2006), image orientation and dense point cloud 
extraction (Herrero-Huerta et al., 2015). The 
Pix4Dmapper software package (Pix4D SA, Lausanne, 
Switzerland) is employed for image processing. In 
addition, the GCPs’ (Ground Control Points) 
measurements are employed in retrieving the camera 

interior parameters and correcting for any systematic error 
or block deformation. 
The generated point cloud of each date allows plant height 
estimations (Malambo et al., 2018), characterizing crop 
geometry with a high detail and accuracy. 
 

2.2.3 Point Cloud processing 
 
Generated point clouds are used to extract the soybean 
height, critical for biomass and yield estimation (Tilly et 
al., 2015). These point clouds possibly enclose outliers 
owing to the massive and automated nature of the 
photogrammetric processing. To filter isolated clusters, a 
statistical analysis on each point's neighbourhood is 
performed by assuming a Gaussian distribution of 
neighbours' distances (Herrero-Huerta et al., 2018). 
Afterward, to guarantee fully registered point clouds, the 
Iterative Closest Point algorithm (Besl and Mckay, 1992) 
is used, getting a negligible mean absolute error among 
ground points from multi-temporal datasets. Afterwards, 
point clouds are filtered by a common bounding box. With 
the aim to derive physiological crop dynamics, deviation 
point clouds of height variations between multi-temporal 
datasets are computed. Consequently, an accurate cloud-
to-cloud distance is derived giving a local approximation 
model to the reference cloud by a quadric surface. 
Outcome deviation point clouds precisely establish the 
physiological growth dynamics. The next step is the 
triangulation of the point cloud. The meshing algorithm 
chosen is 3D Delaunay triangulation (Golias and Dutton, 
1997). These meshes have to be refined to remove the 
errors generated during the automated process, through 
the approximation of Attene (2010). Finally, subtractions 
from meshes are applied to quantify volume increments 
per plot associated to biomass production. 
  

3. EXPERIMENTAL RESULTS AND 
DISCUSSION 

 
The soybean experiment was performed at the Agronomy 
Center for Research and Education (ACRE) during the 
2018 growing season in West-Lafayette (Indiana, USA). 
The study area has an extension of 252.4*109.5 m2, 
consisting of 20 plots in vertical and 48 plots in horizontal, 
with different sizes depending of the number of horizontal 
rows with the same genotype (4, 8 and 6 rows), as Figure 
2 shows. The camera configuration was with along-and 
across-track overlap of ca. 75%, adequate to Pix4D 
software processing. A flight altitude over the ground of 
79 m is obtained by Sensefly software, given the camera 
focal lengh (10 mm) and the required Ground Sample 
Distance (GSD). The exposure time was fixed to 1/2000 
sec and the ISO was 125. 8 GCPs were placed on the 
ground for scaling, georeferencing and analysis purposes 
and measured with GNSS, using RTKNAVI software 
(Takasu 2009). A total of 66 images (in average) were 
used for the photogrammetric processing. 
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Figure 2: Study area  
 

Periodic flights were done during 2018 growing season in 
the following dates: June 14th (DAP 14), June 27th (DAP 

27), July 14th (DAP 44), July 26th (DAP 56) and August 
18th (DAP 79), being the planting date May 31st (DAP 0). 
Figure 3 illustrates the deviation point clouds using the 
one from June 14th (DAP 14) as a reference. In addition, 
Table 2 collects the reached statistical parameters. 
Figure 4 analyses one particular plot to quantify the 
biomass from DAP 44 to DAP 56. The point cloud is 
converted into a mesh by applying a 3D Delaunay 
triangulation. Finally, subtractions from these meshes 
gives us the volume increment of 0.178 m3 for this specific 
plot, related to biomass production. Table 3 summarizes 
the volume increments of this plot at different dates, using 
DAP 14 as reference. 
 
 

 
 

Figure 3: Deviation point clouds over Soybean using DAP 14 as reference at: (a) DAP 27, (b) DAP 44, (c) DAP 56 and (d) 
DAP 79, in meters. 

 
DAP No. of Points Statistics 

  Min Max Mean Sigma 
14 (ref.) 1613588 - - - - 

27 1580992 0 0.241 0.021 0.158 

44 1711892 0 0.780 0.448 0.592 

56 1713237 0 1.299 0.578 0.614 

79 1421094 0 1.254 0.544 0.611 

Table 2. Statistical parameters of the deviation point clouds in m using DAP 14 as reference. 
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Figure 4: Biomass estimations from plots between DAP 44 and DAP 56. 

 
DAP Volume increment (m3) 

27 0.108 

44 0.291 

56 0.469 

79 0.601 

Table 3. Increment volume (m3) at different dates, using DAP 14 as reference, linked to biomass production. 
 

4. CONCLUSIONS 
 

This study is evidence of the great potential of UAS to 
generate 3D models for soybean phenotyping as a rapid, 
accurate and cost-effective tool. Specifically, this study 
evaluates the power of high spatial and temporal 
resolution RGB data to soybean phenotyping selection. 
Additionally, this workflow can be successfully used for 
other HTPPs and crops planted in breeding nurseries. 
Even so, more comprehensive studies are necessary, 
including studies on different crop species. Furthermore, 
the UAS approach for precision farming is in constant 
evolution and represents an extremely dynamic sector. In 
this context, this research is our contribution as a 
methodology for soybean high throughput phenotyping 
from UAS-based image modelling. 
The proposed framework demonstrates that it is highly 
feasible to provide relatively accurate physiological 
growth dynamic and biomass estimations of soybean, 
providing valuable insight for high spatial and temporal 
resolution in agriculture, genetic inference and 
phenotyping selection (Sankaran et al., 2015). 
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