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ABSTRACT: 

 

 

Shadows are common in any kind of remote sensing images. Unmanned Aerial Vehicle – UAV with a light camera attached can 

acquire images illuminated either by direct sunlight or by diffuse light under clouds. Indeed, areas with pixels shaded  by clouds 

must be detected and labelled in order to use this additional information for image analysis. Classification of health and diseased 

plants in permanent culture as the orange plantation field can present some errors due to tree cast shadow. So, hyperspectral or 

multispectral image classification can be improved by previous shadow detection. Some FPI hyperspectral camera, designed for 

agricultural applications is limited in the spectral range between 500 to 900 nm. Wavelengths in the region of blue light and in the 

SWIR spectral region have physical properties that enable the enhancement of shaded regions in the images. In this work some 

combinations of different spectral bands were evaluated in order to specify those suitable to detect shadows in agricultural field 

images. In this sense, considering that vegetation and soil are the two main kind of coverage in an agricultural field, we hypothesized 

that wavelengths near blue light and the longest near infrared available in the camera range are good choices. In both spectral regions 

soil and vegetation targets have small spectral differences which contribute to enhance the differences between shaded and 

illuminated regions in the image. Hyperspectral images acquired with a FPI hyperspectral camera onboard a UAV over a plantation 

of oranges were used to evaluate these spectral bands. The results showed that the wavelengths of aproximatelly 510 nm and 840 nm 

available in the FPI camera are the best to  detect any type of shadows in the agricultural fields. 

 

 

1. INTRODUCTION 

There are shadows in almost all types of aerial imagery. 

Shadows in images occlude other targets and limit spectral 

analysis, so that their identification and characterization can 

help image analysis. They are useful when estimating Sun 

orientation, estimating or measuring objects size and for some 

non-linear radiometric corrections. However, there are problems 

in some kinds of image analysis such as object detection or 

recognition, image matching, spectral signature analysis among 

others.  

 

Even considering that shadows could provide useful 

information in many kind of image analysis, they frequently 

cause errors in the image classification and analysis process. 

Image analysis can be improved by shadows previous detection 

and labelling since targets can be partially occluded by them. 

Either way, its location must be known in order to take 

advantage of its presence in the image or to prevent image 

analysis errors.  

 

High resolution images taken by Unmanned Aerial Vehicle – 

UAV with a light camera attached can have areas with pixels of  

targets either directly illuminated by the sunlight or by diffuse 

light in shaded areas. Cloud shaded pixels cannot be analysed 

by the same parameters as regular directly sun illuminated 

targets. There are alternatives to analyse these classes of cloud 

shaded pixels. Another alternative is to repeat the image 

collection in the same region to have pixels free from cloud 

shadow influence. However, in both cases it is necessary to 

detect which pixels are influenced by cloud shadows. 

 

Many works were developed in order to detect shadows in 

remote sensing images and there are many improvements 

related to the cloud shadow detection in orbital remote sensing 

images (Sun et al., 2018; Zhu et al., 2015; Simpson et al., 2000). 

Dare (2005) applied a variance-based region filtering in order to 

separate shadows from falsely detected non-shadowed regions. 

This approach was adopted to avoid targets which have 

radiometric properties similar to shadows, namely water, trees 

and dark elements. 

 

There are many algorithms dedicated to shadow detection: some 

approaches are based on spectral scattering, which should be 

stronger in lower wavelengths, mainly in the blue channel while 

some others are based on combination of radiometric and 

geometric analysis or based on dark objects segmentation.  

 

Shadow detection algorithm in color aerial images was also 

developed by Freitas et al., 2017 and Santos et al. (2006). 

Freitas et al. (2017) developed an algorithm based on the 

hypothesis that most deep shadows have blue and violet 

wavelengths (Adler-Golden et al., 2002; Polidorio et al., 2003). 

They computed an index previously proposed by Polidorio et al. 

(2003), which is computed using the intensity and saturation 

components from HIS color space in order to take advantage of 

the stronger scattering in the violet and blue wavelengths. 

Shadow pixels have low intensity but high saturation of the 

visible scattered light. Freitas et al. (2017) combined that index 

with a shadow filter as proposed by Santos et al. (2006) in order 

to detect shaded pixels. 

 

Spectral regions in the blue light and SWIR are usually adopted 

for shadow detection, but FPI camera designed for agricultural 

applications does not acquire blue light or SWIR wavelengths. 

in different spectral ranges. Rikola camera is a hyperspectral 

camera based on the Fabry-Pérot Interferometer (FPI). Spectral 

bands are set according to the designed mission. The central 
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wavelength of each band is adjustable based on a distance 

between mirrors of the FPI device. Even being feasible to 

choose up to 50 narrow bands in this camera, it is common to 

specify only 25 bands for agricultural applications. In any case, 

it is useful selecting and evaluating which bands are more 

suitable for shadow detection, considering the spectral range 

from 500 nm to 900 nm of this kind of FPI camera.  

 

This work aims to select spectral bands from the region of 

visible and near infrared to identify the pixels influenced by 

shadow in agricultural fields. Summer harvest monitoring is an 

important application for remote sensing based on UAV 

technology, but cloud shadows may introduce undesirable noise 

that should be avoided in order to have a useful mosaic for 

image analysis. 

 

We have hypothesised that there are few wavelengths in the FPI 

hyperspectral image which are able to better discriminate 

shaded areas. Indeed, in agricultural fields there are mainly 

vegetation cover and soil which can be covered by shadows. 

Then, shadow detection can be simplified since the spectral 

signature was considered in order to simplify the classification 

process. It is well known that many spectral indices take 

advantage of their spectral signature in order to enhance their 

differences.  Some cameras are designed to take multispectral 

images for agricultural applications having spectral bands in the 

red and near infrared regions. 

 

The combination between red and near infrared regions must be 

avoided to facilitate shadow detection since that these spectral 

regions enhance differences between soil and vegetation. 

Longer wavelengths in the near infrared can have soil 

reflectance as high as vegetation cover and small wavelengths 

radiation in the visible region can have low reflectance for both 

types of cover. In this work we adopted two samples of images: 

with and without cloud shadows, in order to evaluate the 

performance of two spectral bands among 25 spectral bands to 

shadow detection. One is in the spectral region in the blue and 

green spectral regions and other is the longest wavelength in the 

near infrared taken by our FPI camera. 

 

Two sample sets of hyperspectral images acquired by a tunable 

Fabry-Pérot interferometer camera developed by the VTT 

Technical Research Centre of Finland were adopted to select 

spectral bands suitable to classify pixels affected by shadows. 

An unsupervised classification, with K means algorithm, was 

applied in order to classify cloud shadows, plant shadows and 

illuminated regions in images which Ground Sample Distance – 

GSD varies between 10 cm to 50 cm. We applied this basic 

algorithm in order to check the similarities between soil and 

vegetation spectra in the shaded regions and between 

illuminated and shaded regions. 

 

1.1 Cloud shadows and plant shadows in agricultural fields 

There are two classes of shadows: cast and self shadows. The 

former is a result of the projection of the object and the latter is 

a projection of shadows on the own object. In this work both 

kinds of shadows are considered together. Classification of 

health and diseased plants in permanent culture as the orange 

plant field can present some errors due to tree cast shadow. 

Aerial surveying which acquire images from sunlighted regions 

and cloud shaded regions could not produce a well 

radiometrically calibrated mosaic. And so, these kind of images 

are not suitable for quantitative analysis. 

 

Umbra and penumbra are two important shadow classes since 

they obscure the scene in different degrees. Umbra is a region of 

shadow where the irradiance of surface depends on scattered 

light. Penumbra is a region with shadows near the border where 

shadows usually have higher intensity values than umbra due to 

the adjacent sources of light. Cloud shadows usually have both 

types: umbra in the centre and penumbra in the border, but 

penumbra can also occurs inside the shadow region due to the 

cloud density variation. Additionally, cloud shadows have 

differences on their darkness levels. 

 

Cloudiness variations cause illumination variations, since cloud 

shadows can block sunlight partially or totally, producing a 

mosaic of umbra and penumbra. This kind of shadow is more 

complex so that solution to recover information from the shaded 

area is an important research topic for UAV image processing 

and analysis. Radiometric compensation of different degrees of 

illumination among images is one of the primary tasks to 

produce mosaics. The radiometric compensation of images 

taken under the same illumination conditions is a usual task, 

however, this radiometric compensation in a set of images with 

and without cloud shadows influences is more difficult to solve.  

 

Summer crop monitoring is an important application for UAV 

images, but the image analysis depends on the spectral data 

quality. There is a high probability of having directly 

illuminated and diffusely illuminated targets in an aerial survey 

based on UAV during the summer crop in Brazil. Indeed, this is 

a difficult task in image analysis since the agricultural fields in 

Brazil are usually large. The application of different algorithms 

on illuminated regions and shaded by clouds should produce 

better mosaics. 

 

Classification of tree species in a scene of natural forest area 

based on a tree crown analysis can also be benefited by 

preliminary self shadow detection. Stressed orange trees can be 

identified in multispectral and hyperspectral images, but 

previous self shadow detection can be useful for the image 

analysis. In both cases, previous shadow detection can add this 

important feature to the analysis. 

 

1.2 Fabry-Pérot Interferometer (FPI) hyperspectral camera 

 

There are many light image sensors developed to acquire 

multispectral and hyperspectral images to produce crop images. 

The hyperspectral camera based on Piezoactuated FPI camera is 

a light camera designed to get images onboard a UAV.  

 

 

 

 

 

 

 

 

 

Figure 1. Hyperspectral camera based on a Piezoactuated FPI 

 

The camera adopted in this work is a 2014 prototype, model 

DT-0014 (Figure 1), developed by VTT (Technical Research 

Center of Finland) and Rikola Ltd. The more suitable model for 

crop monitoring has its spectral range between 500 nm to 900 

nm.  
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1.3 Vegetation and soil spectral signatures 

Agricultural field images collected by light cameras attached to 

a UAV have vegetation cover as the main target, but soil is a 

natural background which is also visible in a variable degree 

depending on the harvest phenological stage. Anyway, these 

kinds of image have both classes of targets combined. Then, it 

is desirable they have lower spectral reflectance differences in 

the wavelengths adopted to detect pixels which are influenced 

by shadows and consequently enhance the contrast between 

pixels which correspond to sunlighted regions in contrast with 

shaded regions. 

 

An examination of typical spectral signatures of soil (Fig. 1) 

and vegetation (Fig.2) in the spectral range from 500 nm to 900 

nm, shows that wavelengths at the limits of this range are 

suitable to shadow detection in the images of agricultural field. 

In Fig. 2 red lines show that the differences of the spectral 

signatures of soil and vegetation tend to be lower. Indeed, these 

spectral signatures depend on many variables, including degree 

of humidity, but they tend to oscillate around these typical 

signatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Spectral response of soils 

Adapted from McCoy, 2005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Spectral response of vegetation 

Adapted from McCoy, 2005 

 

2. MATERIALS AND METHODOLOGY 

Segments of two mosaics were adopted as sample images to 

evaluate our hypothesis. One mosaic was produced by an aerial 

surveying with a light aircraft with a flight height of 

approximately 800 m, and another produced by a UAV platform 

with a flight height of approximately 120 m. The first survey 

produced a spectral cube which pixels have Ground Sample 

Distance - GSD of 50 cm, from here named LRcube (low 

resolution cube) and the second a cube with 10 cm of GSD, 

which is named as HRcube (high resolution cube). Both cubes 

have 25 spectral bands. LRcube is a digital number-DN mosaic, 

while HRcube is a Reflectance Factor mosaic produced by 

radiometric calibration process (Honkavaara et al., 2012; 2013).  

 

We adopted these two types of spectral data in order to evaluate 

the robustness of the spectral classification applied on a 

radiometric calibrated and non-calibrated data sets. This is an 

important aspect for real time shadow cloud detection 

approaches. 

 

Table 1 shows the central wavelength and FWHM of both 

cubes. Two different plots of the same orange-producing farm 

located in Santa Cruz do Rio Pardo, state of São Paulo, Brazil 

were covered. 

 

Figure 3 shows the location of this area. The coordinates of the 

study area in the WGS84 system are 22°47'42.14"S and 

49°23'46.28"W. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Guacho farm in the city of Santa Cruz do Rio Pardo. 

City of Santa Cruz do Rio Pardo in Sao Paulo State and in 

Brazil. 

Table 1 shows the central wavelengths and their Full width at 

half maximum-FWHM for both spectral cubes. 

 

Table 1 -  Central wavelenghts and their FWHM for 50 cm GSD  

and 10 cm spectral cubes 

 

The evaluation of the hypothesis of this work was based on 

statistics extracted from a sample of pixels influenced by 

shadows, in order to check their spectral similarities and 

differences. In this sense, we have applied an unsupervised 

classification algorithm, K-means, since it is expected that 

pixels of shaded regions are spectrally different from those non-

shaded (sun lighted) regions. In addition, there is no intention to 

propose an algorithm for shadow detection, but rather 

λ (nm) 
FWHM 

(nm) 
λ (nm) 

FWHM 

(nm) 
λ (nm) 

FWHM 

(nm) 

506.1 12.5 629.9 15.2 734.8 19.8 

519.9 17.4 650.4 14.7 750.2 18 

535.1 16.8 660.5 17.1 769.9 18.7 

550.4 16.5 669.7 19.8 790.30 17.4 

563.9 17.1 690.3 18.9 810.5 18 

580.2 16 700.3 18.9 819.7 17.8 

590.0 16.6 715.1 19.7 830.2 16.8 

605.1 15.1 725.1 19.1 840.3 16.7 

620.2 16.3 λ = central wavelength 
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evaluating our hypothesis which can be useful for further 

algorithm design. 

Maximum, minimum and mean values are enough to check our 

hypothesis. The range between maximum and minimum values 

along the spectral range must be lower at the limits of the 

camera spectral range. 

 

Only these two wavelengths at the limits of the camera spectral 

range were adopted to shadow classification. The spectral 

classes produced were examined in order to check which one 

was related to shaded regions. Then, pixels belonging to this 

spectral class are adopted as a region of interest which produced 

the statistics of the shadow pixels in each spectral cube. 

 

3. RESULTS  

The images which central wavelengths are 506.1 nm and 

840.3 nm were adopted as the first option for shadow 

classification. These bands were visually evaluated in order to 

check their quality, since  the sensibility at the limits  of the 

spectral range is low and images can have low quality 

depending on the irradiance of the targets and the integration 

time when acquiring the hypercubes. 

 

Only the images of the LRcube have good quality for both 

wavelengths, while the lower wavelength image of HRcube 

presented high level of noise. So, it was necessary to adopt the 

spectral image which central wavelength is 519.9 nm instead of 

506.1 nm. The quality of the spectral image centred at 840.3 nm 

presented good quality in both spectral cubes. 

 

Figure 4 shows a color composition adopting the central 

wavelengths images 840.3 nm to red - R, 660.5 nm to green - G 

and 506.1 nm to blue - B. The 660.5 nm were presented as 

green to increase the contrast of the dirt road which is inside the 

cloud shadow. This is not a good choice to detect shadow due to 

the high contrast between vegetation and dirt road in this 

spectral image. It is noted that the contrast between the dirt road 

and vegetation is lower in the Fig. 3 color composition which 

was produced by combining the 840.3 nm to the 506.1 nm 

avoiding the image which central wavelength is 660.5 nm.  

 

 

 
Figure 4. Color composition of LRcube: R 840.3 nm, G 660.5 

nm and B 506.1 nm 

 

 
Figure 5. Color composition of LRcube: R840.3 nm, G 840.3 

nm and B 506.1 nm 

The LRcube was adopted in order to have cloud shadow and 

self shadows in the same cube. The HRcube is showed in a Fig. 

6 where there are only shadows of the orange plats. There are 

some parts of dirt road under the shaded areas and out of 

shadow. Two bands of HRcube are showed as a color 

composition in Fig. 6, where 840.3 nm is the R and G 

component while 519.9 nm is represented as B.  

 

 
 

Figure 6. Color composition of HRcube: R 840.3 nm, G 519.9 

nm and B 519.9 nm 

 

Figure 7 shows the best result for the LRcube classification 

adopting images whose central wavelengths are 840.3 nm and 

506.1 nm. Classification result includes shadows of orange 

plants and cloud shadow. It can be noticed that the result 

presents few errors despite the algorithm is a simple clustering 

technique based only on a spectral feature. The results obtained 

seem to be a suitable sample data to extract statistics of the 

shadow pixels. 

 

 
 

Figure 7. The classification results of two bands of the LRcube 

where red are pixels of shadows which include plant shadows 

and cloud shadows while green represents pixels of the non-

shadow areas. 

 

The classification of two bands of the HRcube is shown in Fig. 

8, where red colour depicts pixels of shaded regions and other 

colours represents the spectral variations of vegetation 

coverage. 

 

This cube has 10 cm GSD which is a very high spatial 

resolution. Vegetation is classified into different spectral classes 

due to different densities, health and kind of vegetation. This 

result also demonstrates that the spectral feature analysis is 

good enough to detect pixels with shadows and it seems to be 

suitable to be adopted as a sample data to extract statistics for 

our analysis. 
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Figure 8. The classification results of two bands of the HRcube 

where red are pixels of shadows while other colors represent 

pixels of the no shadow areas. 

 

 

Figure 9 and 10 show segments of LRcube and HRcube color 

compositions overlapped by the polygons of respective 

classified shadows. 

 

 
 

Figure 9. Image sample of LRcube color composition 

overlapped to the polygons which represent shadow 

 

 
 

Figure 10. Image sample of HRcube color composition 

overlapped to the polygons which represent shadow 

 

Figures 11 and 12 present graphics of the maximum, minimum 

and mean values extracted from both samples. 

 

 
 

Figure 11. Graphical representation of maximum, minimum 

(red lines) and mean (white) values of all wavelengths of the 

sample which represents shadow pixels in the LRcube 

 

It is possible to verify that the difference between maximum and 

minimum values tends to be lower at the limits of the spectral 

wavelengths of the camera. In fact, the band centred at 519.9 

nm has the minimum difference in the visible spectral region. 

 

The statistics of this spectral band is minimun equal to 2.535, 

maximum equal to 23.903, mean value is 7.949 and the standard 

deviation is 2.145. While the band centred at 840.3 nm has the 

minimum difference in the near infrared where the statistics 

values are: 11.677 as minimum, 45.383 as maximum, mean is 

28.001 and the standard deviation is equal to 6.171. It is noted 

that the band centred at 519.9 is a little bit better than the band 

adopted to classify the shaded areas, but the sample extracted 

from the cube was suitable to show that the extremes of the 

available spectra are good choices for shadow detection. 

 

Figure 12 is similar to Figure 11 but represents the statistics of 

the HRcube. It is noted that the curves of maximum values are 

similar for both cubes, while mean and minimum values do not 

vary similarly. This behaviour could be related to the lower 

radiation available since there are not scattered light but mostly 

from adjacency, which seems to be very low.  

 

 
 

Figure 12. Graphical representation of maximum, minimum 

(red lines) and mean (white) values of all wavelengths of the 

sample which represent shadow pixels in the LRcube 

 

Lower differences between maximum and minimum values are 

on 519.9 nm and on the 840.3 nm, as well as to the LRcube. All 

statistics values are presented in the appendix.  

 

4. CONCLUSION 

Sample pixels of shadows were extracted from two spectral 

cubes by applying K-means adopting only 2 bands from 25 

bands available in a cube produced by FPI hyperspectral 

camera. These two bands were chosen at the limits of the 

spectral range available, one in the visible spectral range and 

another at the longest wavelength of the both cubes. 
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The accuracy of classified shaded regions can be considered 

good based only on a visual evaluation, since that the pixels of 

the samples do not need high accuracy to be adopted as sample 

data for statistical analysis. 

 

The analysis of the statistics of both sample pixels showed that 

the hypothesis that bands centred at the limits of the spectral 

range of FPI camera is a good choice for shadow detection. 

However, the band centred at 519.9 nm is better than the 

smallest wavelength, 506.1 nm, which was indicated as the best 

choice. 
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Appendix 

 

Statistics of the pixels of shaded regions – LRcube 

 

band Min Max Mean Stdev 

Band_1 0.0190 26.4127 6.1582 2.5664 

Band_2 2.5349 23.9034 7.9497 2.1454 

Band_3 3.6931 25.9973 9.7329 2.4040 

Band_4 3.8026 29.1708 10.4711 2.6478 

Band_5 3.6614 31.8437 10.4057 2.8372 

Band_6 3.0447 36.6894 9.3988 3.1341 

Band_7 2.4837 36.9510 8.6872 3.2646 

Band_8 1.3258 40.6287 8.2507 3.5194 

Band_9 1.4794 40.5925 7.7677 3.7783 

Band_10 0.9379 41.4401 7.4866 3.9121 

Band_11 0.000 36.4799 4.6394 3.6270 

Band_12 1.0887 41.6804 6.1327 3.9682 

Band_13 1.1039 43.6104 6.4758 4.1843 

Band_14 1.4975 42.2491 6.9054 3.9331 

Band_15 2.6684 42.3588 8.8897 3.8775 

Band_16 5.7421 42.8044 13.0557 3.8777 

Band_17 6.8236 41.2510 15.5842 3.8509 

Band_18 9.1865 44.7122 20.7432 4.5255 

Band_19 12.2939 54.3787 29.0793 6.1464 

Band_20 12.2472 51.3073 28.4814 6.0136 

Band_21 14.1191 59.6971 33.3299 7.1396 

Band_22 12.9550 53.9740 29.6363 6.5185 

Band_23 11.2555 48.5833 26.0962 5.8302 

Band_24 11.1881 47.1272 25.9845 5.8066 

Band_25 11.6773 45.3831 28.0006 6.1707 

 

Statistics of the pixels of shaded regions – HRcube 

 

Band Min Max Mean Stdev 

1 0.0000 0.2392 0.0286 0.0199 

2 0.0000 0.1928 0.0344 0.0156 
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3 0.0000 0.2324 0.0401 0.0166 

4 0.0000 0.2822 0.0435 0.0177 

5 0.0000 0.2874 0.0436 0.0183 

6 0.0000 0.2612 0.0384 0.0177 

7 0.0000 0.2931 0.0396 0.0189 

8 0.0000 0.2755 0.0361 0.0183 

9 0.0138 0.3004 0.0464 0.0173 

10 0.0000 0.3021 0.0355 0.0196 

11 0.0000 0.2927 0.0387 0.0237 

12 0.0000 0.2944 0.0314 0.0185 

13 0.0000 0.2598 0.0316 0.0179 

14 0.0000 0.2740 0.0356 0.0186 

15 0.0248 0.3407 0.0681 0.0195 

16 0.0503 0.5028 0.1057 0.0242 

17 0.0429 0.5939 0.1195 0.0311 

18 0.0408 0.7600 0.1290 0.0377 

19 0.0186 0.9857 0.1461 0.0474 

20 0.0000 1.2249 0.1670 0.0561 

21 0.0134 1.1576 0.1575 0.0589 

22 0.0052 1.0847 0.1613 0.0608 

23 0.0000 1.0419 0.1606 0.0628 

24 0.0000 0.9622 0.1653 0.0632 

25 0.0000 0.0844 0.1549 0.0565 
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