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ABSTRACT: 

In recent years, there has been a growing number of small hyperspectral sensors suitable for deployment on unmanned aerial systems 

(UAS. The introduction of the hyperspectral snapshot sensor provides interesting opportunities for acquisition of three-dimensional 

(3D) hyperspectral point clouds based on the structure-from-motion (SfM) workflow. In this study, we describe the integration of a 

25-band hyperspectral snapshot sensor (PhotonFocus camera with IMEC 600 – 875 nm 5x5 mosaic chip) on a multi-rotor UAS. The 

sensor was integrated with a dual frequency GNSS receiver for accurate time synchronisation and geolocation. We describe the 

sensor calibration workflow, including dark current and flat field characterisation. An SfM workflow was implemented to derive 

hyperspectral 3D point clouds and orthomosaics from overlapping frames. On-board GNSS coordinates for each hyperspectral frame 

assisted in the SfM process and allowed for accurate direct georeferencing (<10 cm absolute accuracy). We present the processing 

workflow to generate seamless hyperspectral orthomosaics from hundreds of raw images. Spectral reference panels and in-field 

spectral measurements were used to calibrate and validate the spectral signatures. This process provides a novel data type which 

contains both 3D, geometric structure and detailed spectral information in a single format. First, to determine the potential 

improvements that such a format could provide, the core aim of this study was to compare the use of 3D hyperspectral point clouds 

to conventional hyperspectral imagery in the classification of two Eucalyptus tree species found in Tasmania, Australia. The IMEC 

SM5x5 hyperspectral snapshot sensor was flown over a small native plantation plot, consisting of a mix of the Eucalyptus pauciflora 

and E. tenuiramis species. High overlap hyperspectral imagery was captured and then processed using SfM algorithms to generate 

both a hyperspectral orthomosaic and a dense hyperspectral point cloud. Additionally, to ensure the optimum spectral quality of the 

data, the characteristics of the hyperspectral snapshot imaging sensor were analysed utilising measurements captured in a laboratory 

environment. To coincide with the generated hyperspectral point cloud data, both a file format and additional processing and 

visualisation software were developed to provide the necessary tools for a complete classification workflow. Results based on the 

classification of the E. pauciflora and E. tenuiramis species revealed that the hyperspectral point cloud produced an increased 

classification accuracy over conventional hyperspectral imagery based on random forest classification. This was represented by an 

increase in classification accuracy from 67.2% to 73.8%. It was found that even when applied separately, the geometric and spectral 

feature sets from the point cloud both provided increased classification accuracy over the hyperspectral imagery. 
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1. INTRODUCTION 

Recent advances in sensor technologies have yielded a new 

breed of hyperspectral snapshot imaging sensors which allow 

the capture of full-frame, hyperspectral images in a single 

exposure (Geelen et al. 2015). Up to this point, compact 

hyperspectral imaging systems have largely been restricted to 

capturing only two of the three dimensions of a hyperspectral 

image in a single exposure, requiring an additional scanning 

process to complete the third dimension (Hagen and Kudenov 

2013). The snapshot imaging sensors circumvent the scanning 

process, by extending the technology used in many modern-day 

digital cameras. This is characterised by the use of a 

multispectral filter array (MSFA), in which a mosaic of 

wavelength specific filters are arranged on the image sensor. 

This means while each pixel is receptive to only a single band, 

the repeated arrangement of filters across the sensor allows a 

full hyperspectral image to be derived via a demosaicking 

process (Hagen and Kudenov 2013). A key implication of the 

ability to capture full-frame hyperspectral images in this way, is 

they retain the geometric constraints of standard optical 

imagery. This opens the possibility to apply conventional 

photogrammetric and structure from motion (SfM) principles to 

images with overlapping extent, in order to derive three 

dimensional (3D) structural information in the form of point 

clouds (Aasen et al. 2015).  Since the point cloud is directly 

derived from the hyperspectral imagery, each of the points in 

space can also be attributed with the hyperspectral information 

relating to that point. This produces a rich new data source, 

which effectively combines the desirable aspects of both passive 

optical and LiDAR point clouds, and has potential to lead to 

more robust classification methodologies. 

Whilst this advancement in sensor technology presents exciting 

opportunities, there are a number of problematic factors that 

must also be overcome. Due to the system employed to capture 

the hyperspectral information, an inherent limitation lies in the 

fact that effective spatial resolution of each band is inversely 

proportional to the total number of distinct bands. For example 

in the case of the 25 band IMEC SM5x5-NIR (SM5x5) image 

sensor (Geelen et al. 2015) utilised in this study, the full 

2048x1088 pixel resolution of the sensor is reduced to an 

effective resolution of 409x217 pixels for each spectral band. 

This adversely impacts the level of spatial detail that can be 

captured, and consequently the range of flying heights and 

size of regions that a sensor such as this can be efficiently 

deployed (Yang et al. 2017). Aside from the operational limits, 

the significant spectral undersampling of the sensor also 

presents substantial implications in terms of potential spectral 

accuracy. Since the hyperspectral measurements must be 
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reconstructed from a number of independent pixels, each band 

is sampled from a slightly different location. In environments 

with highly variable surfaces, this has potential to produce 

inaccurate spectral readings in which the measurements of 

individual bands relate to different target objects. 

Additionally, in the context of the SM5x5 specifically, a 

degree of filter cross-talk has also been observed (Pichette et 

al. 2017). This is characterised by the fact that the pixels 

relating to each band, are not solely responsive to the primary 

band wavelength.  

To coincide with the ability to produce hyperspectral point 

clouds, a file format and software is also essential for the 

efficient storage and processing of this information. Many 

current point cloud formats are designed for LiDAR based data, 

which are generally well defined with a discrete set of 

predefined attribute types. The LAS format (American Society 

for Photogrammetry and Remote Sensing 2013) is one of the 

most common industry formats, developed by the American 

Society for Photogrammetry and Remote Sensing (ASPRS) to 

provide a standardised file format for the storage and exchange 

of LiDAR data. Whilst it does allow for the storage of spectral 

attributes, this is currently restricted to only four distinct bands. 

While ASCII based formats provide a greater level of flexibility, 

they are inherently inefficient in both processing and storage. A 

number of open-source and proprietary formats are available, 

which allow the addition of an arbitrary number of attributes to 

each point. However, the software and processing tools 

associated with them are found to be limited for this use case.  

The aim of this study is to determine if the rich source of 

information present within a hyperspectral point cloud can 

improve the robustness and accuracy  of tree species 

classification, specifically in comparison to standard 

hyperspectral imagery and geometric point clouds in isolation. 

In pursuit of this, classification will be targeted at the 

discrimination of two Eucalyptus species, E. pauciflora and E. 

tenuiramis, on a native reforestation plot. 

 

2. METHODS 

2.1 Data Collection 

All imagery was captured utilising the IMEC CMV2K-SM5x5-

NIR snapshot mosaic image sensor deployed in the Photonfocus 

MV1-D2048x1088-HS02-G2 camera. The image sensor is 

capable of capturing 25 individual spectral bands, by employing 

a 5x5 square non-redundant MSFA pattern which is repeated 

across the image sensor. The camera is externally fitted with a 

combination of a 595 nm high-pass and 874 nm low-pass  filters  

to  restrict  the  spectral  region  of transmittance. 

For the acquisition of aerial imagery, the camera system is 

mounted on the DJI S-1000 multi-rotor via the 2-axis gimbal to 

minimise the effect of flight dynamics   on the image acquisition 

process (Figure 1). On board positioning of the UAV was 

measured utilising the Trimble BD920-W3G global navigation 

satellite system (GNSS) receiver module. The camera system 

was set to trigger the GNSS receiver to log the precise time of 

each camera exposure, allowing each image to be geotagged in 

post-processing. A Leica 1200 base station was positioned 

approximately 300 m from the study plot, to allow a short 

baseline differential solution to be derived for the Trimble 

measurements. 

A custom hyperspectral point cloud format as well as numerous 

visualisation and processing modules were developed for the 

purpose of this study (Figure 2). 

 

 
Figure 1. The DJI S-1000 multi-rotor flight platform, with 

downward facing PhotonFocus camera attached to the 2-axis 

gimbal and Trimble GNSS receiver mounted on top. 

 

 

 
Figure 2. Screenshot of the developed HyPC visualisation 

software. 

2.2 Tree species classification 

2.2.1 Study site and data collection 

In this study, we collected data from a native restoration 

plantation located at Dungrove, approximately 13 km NW of 

the township of Bothwell, Tasmania, Australia. Established in 

2010 through a partnership between Greening Australia, the 

Tasmanian Government and the University of Tasmania, the site 

consists of plantings of a number of native species on degraded 

farmland. The specific plot captured in this study covers 

approximately 2 ha and primarily contains a mixture of 

Eucalyptus pauciflora and Eucalyptus tenuiramis plantings, 

with a number of understory species also present. 

Imagery was captured based on two predetermined flight paths, 

consisting of a series of transects flown in two perpendicular 

directions forming a grid pattern. Images were captured at an 

approximate flying height of 50 m above ground level (AGL) 

resulting in an average ground sampling distance (GSD) of 1.6 

cm per pixel and 8 cm for each instance of the filter array.  The 

Photonfocus imagery was automatically captured at a rate of 4 

Hz, and the resulting data set was subset by one third to  reduce 

storage and processing demand.  Imagery was captured with a 

side overlap of 70% and a forward overlap equating to 

approximately 70% after subsetting the captured imagery. 
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A series of 22 photogrammetric targets were randomly placed 

throughout the extent of the study region to serve as ground 

control points (GCPs) to be used for georeferencing of the point 

cloud and geometric accuracy evaluation. The position of each 

GCP was precisely measured using the Leica 1200 rover with 

RTK connection to the Leica 1200 base station located 

approximately 300 m away. This resulted in reported mean 

positional accuracy of approximately 0.01 m. 

 

In addition to the acquired field data, an existing dataset of leaf 

level hyperspectral species measurements was obtained from 

ongoing research work being undertaken in conjunction with 

the Dungrove project (Bailey 2013).  

 

2.2.2 Image pre-processing 

A number of sequential pre-processing steps were conducted to 

spectrally calibrate and prepare the imagery for the subsequent 

SfM workflow. 

The initial step in processing was to remove the systematic 

component of noise from the raw imagery. Utilising the 

collection of dark reference imagery captured before take-off, 

the responses of each individual pixel is averaged to derive a 

representative mean dark current noise image.  The white 

reference correction is performed to simultaneously remove the 

effects of vignetting and calibrate the raw DN values captured 

by the sensor.  Similarly to the dark reference images, using the 

collected white reference images, the responses of each 

individual pixel were averaged to derive a representative mean 

white reference image.  

A demosaicking process was then performed to reconstruct the 

full hyperspectral data cube from the raw 2D, sub-sampled 

spectral bands captured by the sensor. This was performed at 

both the spatial resolution of each band (408x217 pixels) as 

well  as the full native resolution of the sensor (2045x1080). An 

inverse distance weighting (IDW) algorithm was utilised in both  

cases. In demosaicking at the lower spatial resolution, the 

central pixel of each mosaic instance for a given band is 

interpolated from the surrounding pixels of the same band. The 

interpolated central pixel values of each mosaic instance are 

then combined to form a single band image at the spatial 

resolution of the sparsely sampled spectra. Demosaicking at the 

full resolution of the sensor is performed using the same 

algorithm, however rather than interpolating only the central 

pixel of each mosaic instance, every pixel is interpolated. 

 

2.2.3 SfM point cloud and orthomosaic generation 

The Agisoft Photoscan Professional (v1.4.1) (Agisoft LLC 

2018) software was used to generate both a point cloud and 

orthomosaic from the flight imagery. The SfM process 

comprises of two core stages. First distinctive points are 

identified and matched across multiple overlapping images. A 

bundle block adjustment is then performed on the matched 

points to estimate both the 3D position and orientation of each 

camera, as well the location of each point. This produces a 3D 

sparse point cloud representation of the scene. Based on this 

initial camera alignment stage, a much denser point cloud can 

then be derived using multi-view stereopsis (MVS) or depth 

mapping techniques. 

Since the images were captured over two distinct flights with 

independent white reference, dark reference and camera 

integration times the radiometric calibration was performed 

separately for each flight. To facilitate this, SfM processing was 

initially performed with the images of each flight split into 

independent chunks. From the generated sparse point cloud, a 

digital surface model (DSM) was produced with 0.05 m pixel 

resolution. This was then used to orthorectify the input images 

and generate an orthomosaic of the study region. The blending 

mode was set to average with a resolution of 0.05 m per  pixel. 

The orthomosaic was then exported from Photoscan and 

transferred to the ENVI software, where the 5 spectral reference 

panels were identified. A region of interest (ROI) was defined 

for each of the reference panels, which in combination with the 

lab measured reflectance of each panel was used to perform an 

empirical line correction.  

The coefficients derived from the empirical correction were 

then applied to the individual images of each flight, 

radiometrically calibrating them to absolute reflectance. These 

radiometrically calibrated images were then imported into a new 

project, upon which the camera positions from the previous 

alignment step were imported. The two flight chunks were then 

merged for further processing. 

The photogrammetric targets which mark the accurately 

measured GCP’s, were identified and pinpointed in the flight 

images to allow more accurate orientation of the study site in 

global space. Of the 22 ground control points 15 were selected 

to orient and constrain the point cloud. The remaining 7 were 

used for accuracy validation.  

The dense point cloud was then generated utilising the 

radiometrically calibrated images from both flights. From the 

dense point cloud, obvious outlying and noise influenced points 

were removed from both below the ground level and above tree 

tops. The dense point cloud was then exported in the XYZ 

ASCII format, ensuring point colours (i.e. spectral reflectance 

values) were included. The final point cloud consisted of 

approximately 12 million points. Utilising the generated DSM, 

an orthomosaic was also produced. The blending mode was set 

to average, which uses the weighted average pixel value from 

individual photos to determine the pixel value in the 

orthomosaic (Agisoft LLC  2018). 

 

2.2.4 Hyperspectral point cloud processing 

To prepare the hyperspectral point cloud for classification, 

processing was completed utilising the developed HyPC 

processing modules. The point cloud was processed utilising the 

following steps in sequence: 

1. CSF ground estimation 

2. DTM estimation 

3. Ground removal 

4. Point height estimation 

5. Crown segmentation 

 

Ground estimation was performed by utilising the python 

implementation of the CSF algorithm. The CSF algorithm 

accepts several parameters which influence the characteristics of 

the surface estimation as well as the interpretation of ground 

points. The simulated cloth resolution was set to 0.5 m, 

rigidness to 2 and the threshold to 0.5 m.  

After identification of ground points, a digital terrain model 

(DTM) was derived from the ground labelled points.  The DTM 

was calculated at 1m resolution, with  the height derived from 

the mean ground point height within each cell. All classified 

ground points were then removed from the point cloud such that 

only above ground points belonging to shrubs and tree crowns 

remained. 

The height above ground level (AGL) was then calculated for 

each remaining point based on the DTM surface. All classified 

ground points were then removed from the point cloud such that 
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only above ground points belonging to shrubs and tree crowns 

remained. 

 

2.2.5 Species classification 

Classification was performed based on the discrimination of two 

Eucalyptus species, E. pauciflora and E. tenuiramis. The 

locations and extent of crowns for each species of interest were 

manually digitised from the generated orthomosaic, based on 

existing reference data from ongoing collaborative research 

from the University of Tasmania and Greening Australia (Bailey 

2013). Crowns that were difficult to identify or determine the 

extent of were omitted. This resulted in 263 crowns in total, 

with   139 E. pauciflora and 124 E. tenuiramis. 

Classification was performed utilising the Python based sklearn 

v.3.2.4.3.1 implementation of the random forest (RF) classifier.  

The classification result was found to be highly dependent on 

the selection of training/test splits. Therefore, a simple iterative 

data splitting approach with k=100 was utilised obtain a more 

reliable accuracy estimate. For each iteration, 70% of samples 

were utilised for training with the remaining 30% retained for 

validation. To maintain consistency across both the orthomosaic 

and point cloud data sets, identical parameters were used in 

each instance, along with identical training/test splits. Training 

samples were randomly selected in a stratified fashion to ensure 

equal representation of each class. The RF classifier was trained 

using 1000 trees and unlimited tree depth, as a high number   of 

trees reduces the impact of random variations from changes in 

parameters (Turner et al. 2018). This provides more accurate 

out of bag error estimates during the training of the model. 

 

Orthomosaic 

For crown classification from the orthomosaic, crowns were 

delineated utilising the previously defined polygons. For each 

crown, two spectral feature sets were derived; the mean of the 

crown spectra and the mean of the 10 brightest spectra. The 10 

brightest spectra from the crown are utilised due to the high 

degree of variation in crown spectra caused by effects such as 

shadowing. 

 

Hyperspectral point cloud 

Individual tree crowns were delineated and segmented utilising 

the previously defined polygons relating to each crown, with the 

appropriate species label assigned.   Figure 5 shows the final 

segmented point cloud utilised for the classification process. 

For the classification of crowns from the hyperspectral point 

cloud a number of spectrally and geometrically based feature 

sets were derived. The derived spectral metrics included 

identical metrics to those used in the orthomosaic classification. 

An additional spectral feature set was also calculated, utilising 

the geometric aspect of points. 

Geometric features were chosen based on metrics identified in 

existing point cloud studies. Specifically, in a study based on 

tree species classification from photogrammetric point clouds, 

Nevalainen et al. (2017) found that density and diameter metrics 

from discrete layers within the crown to provide useful 

discriminatory information. For this reason, the points within 

each crown were split into layers based on 5% height intervals 

of the total crown height. For each of these layers, the point 

density and diameter were calculated. Classification was 

performed independently on 3 different sets of the above 

features: spectral only, geometric only and the combination of 

all features. 

 

3. RESULTS 

3.1.1 Orthophoto classification 

RF classification of crowns based on a k=100 iterative data 

splitting approach produced an overall mean accuracy of 67.2%. 

Significant variation is observed in the individual classification 

results, with cross-validation accuracies ranging from 56.9% to 

78.4%. This indicates classification accuracy is highly sensitive 

to the selection of training features. Inspection of the 

normalised confusion matrix derived from the sum of all 

iterations shows that E. pauciflora was classified with a 

marginally higher producer and user accuracy. This also 

corresponds to the slight imbalance of class sample sizes, which 

may bias the classifier to a degree. 

 

3.1.2 Hyperspectral point cloud classification 

Figure 3 shows the produced hyperspectral point cloud of the 

study site, visualised as a false colour composite of three 

hyperspectral bands. Figure 4 shows the mean and standard 

deviation of the spectra for each species, based on the mean 

spectra of each crown, mean of the brightest spectra of each 

crown as well as the additional mean spectra of the top 5% of 

the crown. Notably the brightest spectra also shows lower 

variance, even though the same number of 10 samples are used 

as in  the orthomosaic. Finally, the spectra from the top layer of 

the crown is shown to provide a medium between the other 

spectral features sets, with higher separation and variance than 

the mean crown spectra, but less than the brightest spectra. 

 
Figure 3. Hyperspectral point cloud of the study site visualised 

as RGB false colour composite comprising of bands centred at 

802, 660 and 605 nm respectively. 
 

Due to the large range of features derived from the 

hyperspectral point cloud, the relative importance of each 

feature set was initially analysed utilising the RF based mean 

decrease impurity metric. Looking at the importance of 

individual features within each feature set (Figure 6), spectrally 

we see that wavelengths in the region <750nm are most 

influential. Additionally, it can be seen that the most influential 

layer based features are predominantly from the layers of the 

upper   canopy. 

RF classification of crowns based the on the 20 most influential 

features produced a mean overall accuracy of 73.8% (Table 1), 

a marginal improvement over the orthomosaic result. Once 

again, the results of individual accuracies for each iteration vary 

considerably, ranging from 62.1 to 86.1%. Also the producer 

and user accuracies derived from the normalised confusion 

matrix are shown to be marginally higher for the E. pauciflora 

class. 
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Figure 4. The hyperspectral point cloud based mean and 

standard deviation of the mean, top and brightest crown spectra 

for both E. pauciflora and E. tenuiramis 

 

The classification of crowns was repeated, restricted to spectral 

only and   structural only point cloud features to test the relative 

discriminatory power each type of feature can provide. Table 1 

summarises the classification results based on each set of 

features as well as the combination of all feature sets. We see 

that although the spectral feature set contained the majority of 

the most important features, classification based on the spectral 

and geometric features in isolation still produced similar 

accuracies, with 71.9% and 71.1% respectively.  

The sensitivity of the classification to  the  selection  of  training  

samples  equates  to individual classification scores ranging in 

excess of 10% of the mean classification accuracy.   It is based 

on this metric that greater differentiation between spectral and 

geometric features is observed, with geometric features 

producing both reduced minimum and maximum accuracies. 

 
Figure 5. The segmented crowns coloured by their designated 

class. 

 

Table 1. Mean classification accuracy based on the spectral 

only, geometric only and combined feature sets of the 

hyperspectral point cloud 

Feature set Mean classification accuracy Accuracy range (k=100) 

Spectral only 71.9% 60.1-84.6% 

Geometric only 71.1% 53.1-79.7% 

All feature sets 73.8% 62.1-86.1% 

  
 

 
Figure 6. Individual importance for each feature in all feature 

sets. The 20 most influential features are highlighted. 

 

 

 

 

4. CONCLUSION 

The development of UAS compatible hyperspectral snapshot 

imaging sensors presents the opportunity to produce 

information rich, 3D spectral point clouds that can provide 

potential advantages over conventional formats. This study 

investigated the tree species classification capabilities of a 3D 

hyperspectral point cloud compared to conventional 

hyperspectral imagery. This encompassed the characterisation 

and development of a spectral calibration and correction model 

for the IMEC SM5x5 hyperspectral snapshot sensor. A spectral 

point cloud format, visualisation and processing software was 

also developed to provide a complete workflow for classifying 

hyperspectral  point  cloud data. 

Based on the classification of two Eucalyptus species, E. 

paucilora and E. tenuiramis, the hyperspectral orthomosaic and 

hyperspectral point cloud produced species classification 

accuracies of 67.2% and 73.8% respectively. Additionally, it 

was found in separating the geometric and spectral components 

of the point cloud and applying them independently, both 

produced improved accuracies over the orthomosaic.  

From the characterisation of the SM5x5 sensor, it was found 

that a significant degree of random noise was present in the 

captured measurements. At its most extreme this equated to a 

SNR which equates to a noise level of 10% of the measured 

signal. Due to the techniques used for the spectral correction of 

the SM5x5, this level of noise was found to be substantially 

amplified after the spectral correction process.  

The developed HyPC format implemented an efficient data 

structure for both the storage and querying of hyperspectral 

points, and was found to provide similar efficiency to an 

existing point cloud format of comparable specifications. The 

newly created visualisation software also provided a practical 

and intuitive environment for the exploration and manipulation 

of hyperspectral point clouds.  

The analysis and results achieved in this study highlight a 

number of aspects which could benefit from future research. Of 
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great significance is the level of noise observed in the SM5x5 

sensor measurements. The severity of this noise is such that 

post-processing solutions are expected to provide limited 

improvement in spectral quality in the future, and rather it is 

recommended that the physical source of noise requires 

identification. The developed software provides an intuitive and 

practical framework for the visualisation, manipulation and 

analysis of hyperspectral point cloud data, and is well placed to 

support future research in this area. It is however recommended 

that further optimisations are required in some cases to improve 

efficiency. The demonstrated improvements observed from the 

hyperspectral point cloud format indicate that it could provide 

strong potential in the remote sensing of forests in the future. 
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