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ABSTRACT:

Detection and delineation of forest trees in airborne observational data has been under study for decades, starting with images.
With the advent of 3D point cloud generation techniques, much research has been spent for point cloud segmentation. From a
cost perspective, aerial images are still advantageous. In this paper, two individual tree crown segmentation approaches for digital
surface models are compared. Both methods attempt to enhance the drawbacks of watershed segmentation in unmanaged forests by
applying a variational technique, locally to a watershed segment or globally to the image, respectively. The preprocessing by means
of local histogram equalization that is necessary to harness the globally applied technique simultaneously improves the performance
of the feature detection, while resulting boundaries are distorted. In contrast, the approach that uses the locally applied technique
does not perform local histogram equalization prior to feature detection. It produces better localized boundaries in cases where
detection is correct, but has a significantly lower rate of detection.

1. INTRODUCTION

This section describes the motivation and background of the
present contribution.

1.1 Background

The problem of individual tree crown segmentation emerged
in the early 90’s in the analysis of areal images (Pollock,
1994), (Gougeon, 1995). It was mainly motivated by forest
management tasks, such as biomass estimation. Meanwhile,
the range of applications has grown considerably, also due to
the availability of hyperspectral data. In particular ecological
questions that are sought to be answered depend on exact
knowledge of a trees location and its boundary. Beginning
in 2000, LiDaR has been used increasingly, connected with
efforts to derive canopy height models (Persson et al., 2002),
(Khosravipour et al., 2014). Considering acquisition costs and
hence the feasible repetition rates of campaigns based on a fixed
budget, optical imagery is still on the inside track. For both
kinds of data, a huge amount of methods have been published.
The types of forests under investigation vary, which hinders a
direct comparison. An exhaustive listing is beyond the scope of
the present article.

The remaining section discusses a few prominent examples
that motivate the methods for digital surface model (DSM)
segmentation, which are to be compared.

1.2 Related Work

(Straub, 2003) is initially carrying out a watershed
segmentation (Vincent , Soillé, 1991) of the squared laplacian
∗Corresponding author

of the surface model at multiple scales. This is followed by
topological scale-segment selection. Selected segments are
then classified using also color information of correspnding
RGB images. A subsequent step refines the segments using the
snakes algorithm (Kass et al., 1988). Although applying the
watershed transform to the squared laplacian is theoretically
a good idea, in densely forested areas the inverted image
gave more stable results (with the downside of boundaries in
valleys). Another drawback is that trees are subjected to a
strict circularity measure and the topology selection is only
shape, but not surface based. Moreover, snakes can firstly
only refine (can not handle topology changes) and secondly
is known to be sensitive to initialization. The broader class
of snakes, parametric active contours, are also prone to create
cusps during the contour evolution. A similar approach can be
found in (Lin et al., 2011).

(Wang et al., 2004) firstly performs laplacian of a Gaussian
based edge detection with fixed mask size. Secondly, the
detected grayscale maximas intersected with distance transform
centres provides seedpoints for a marker controlled watershed
segmentation using geodesic distances. The edge detection
step is supposed to yield closed objects by supplementary
thresholding of dark areas and 8-connected morphologic edge
linking, which seems error-prone. Beyond that, the intersection
of maximas of the grayscale image and the distance transform
will exclude trees with non-centered illumination peaks.

Alternative solutions are e.g. markov random fields (Zhang ,
Sohn, 2010) and marked point processes (Perrin et al., 2005).
Methods that are based on neural networks have only been
applied to plantation-like forests or savanna trees so far (Li et
al., 2009), (Zhao et al., 2018) and it seems difficult to devise a
proper training strategy for unmanaged forests.
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1.3 Contribution

To the best of our knowledge, more recent variational methods
(specifically non-parametric active contours) have not been
applied to the problem in hand. This article describes two
such approches to correct or circumvent that contours resulting
from watershed segmentation on the inverted DSM are located
in the middle of gaps between canopies, respectively. The
first one (MCWST-MGAC) performs a marker controlled
watershed transformation (MCWST) to yield segments, which
may contain gap parts. The gap parts are removed by executing
morphological geodesic active contours (MGAC) locally to
each segment. Hence it tries to improve (Straub, 2003). The
second approach (ACWE-MCWST) applies active contours
without edges (ACWE), (Chan , Vese, 2001), on the global
image to find an object-background separation. The subsequent
watershed segmentation is then restricted to the object areas.
Hence it tries to improve (Wang et al., 2004).

2. SENSOR AND DATA

This section describes the sensor system, outlines the
processing chain for the generation of the DSM and presents
the test data.

2.1 Sensor system

The airborne optical sensor system 3K (Leitloff et al., 2014)
is composed of three Canon EOS 1Ds Mark III and provides
multi-view, very high resolution (VHR) images (one nadir, two
across track off-nadir). This allows to generate VHR DSMs.
Details about the calibration and accuracy assessment of the
camera system my be found in (Kurz et al., 2007) and (Kurz,
2009), respectively.

2.2 Processing chain

The DSM is generated by direct georeferencing. Using
GNSS, images are preoriented and overlaps are found. Then
SIFT features are detected, filtered using RANSAC and
postprocessed using least squares adjustment. The final
orientation is obtained using free bundle adjustment of the
validated (SIFT-) tie points. The point cloud is calculated using
semi-global matching (d’Angelo, 2016) and the DSM is derived
using interpolation. These steps are integrated in the CATENA
(Krauß et al., 2013) processing system.

2.3 Test data

The test data was acquired in 2016 at Kranzberg, Bavarian
forest, Germany. At the flying height of 1000 m, the 3K camera
system covers an area of 2560 times 480 meters with a ground
sample distance of 13 cm. Three plots (deciduous, coniferous,
mixed) were selected in the vicinity of the KROOF project.
Figure 1 shows the RGB images and the corresponding DSMs.

The accuracy of the DSM is briefly demonstrated by visualizing
marked tree tops in the image and the transformed coordinates
of the DSM in figure 2. A comparison of nominal and actual
transformed tree top markers shows a deviation of less than
0.5m.

Figure 1. KROOF area: From top to bottom, the
near-NADIR image / DSM of the coniferous, mixed and
deciduous plots for the 3K-NIR 2016 dataset is shown in

the left / right column.

3. METHODS

The two developed methods are presented in the last
subsections. Each one will be outlined briefly and the single
steps are explained and illustrated in more detail thereafter.
Beforehand, the theory that is common to both approaches is
introduced in the first subsection. The second one explains the
principle of both variational techniques.

3.1 Basic methods

Blob detection A blob denotes a bright feature on dark
background. In the following, it is described how such features
can be detected using the Laplacian of a Gaussian (LoG).

The convolution of an image f with a gaussian kernel g
at different scales σ creates a scale space representation
(Lindeberg, 1994), formally

L(x, y, σ) =

{
f(x, y) , σ = 0

g(x, y, σ) ∗ f(x, y)) , σ > 0,
(1)

where g(x, y, σ) = 1
2πσ

e−
x+y
2σ . The first derivatives form the

gradient operator

∇ = (
∂

∂x
,
∂

∂y
). (2)

The second derivatives form the Hessian matrix
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(a) RGB

(b) DSM

Figure 2. Illustration of the transformation of manually
marked point locations from the DSM to the image.

H =

 ∂2

∂x2

∂2

∂xy
∂2

∂yx

∂2

∂y2

 (3)

H is symmetric and its principal axis representation H ′ exists
as solution of the eigenvalue problem. The Laplace operator is
defined as the trace of H ′:

∇2 = trace(H ′) =
∂2

∂x2
+

∂2

∂y2
(4)

Finally, the scale normalized Laplacian of a Gaussian is defined
as

∇2
normg = σ∇2g. (5)

Using∇2
normg, a discrete 3D-laplacian scale space can be built

up. A point (x, y, σ) in this scale space is identified as a blob

if it is the argument of the maximum normalized filter response
among its 26 neighbours.

Watershed segmentation Intuitively, this algorithm can be
regarded as a flooding simulation that starts from the minima
of all catchment basins in a heightmap. A watershed line is
created, where the water of neighbouring segments meets. For
unseeded WST, this often leads to an oversegmentation due to
spurious local minimas, created by noise. Hence, seeded WST
(MCWST) uses a restricted set of minima to start the flooding
process. The previously introduced Blob-LoG feature detector
is one possible way to find the non-spurious minima. More
details, such as the skeleton of geodesic influence zones, can be
found in (Beucher , Lantuéjoul, 1979).

Curvature of surfaces The principal curvatures k1, k2
(minimum and maximum, respectively) and corresponding
directions d1, d2 of a surface are calculated as the eigenvalues
and corresponding eigenvectors of the Weingarten map
(do Carmo, 1976). In the case ofa Monge Patch, i.e. a mapping
z = f(x, y), the Weingarten Map coincides with the Hessian
matrix. From the principal curvatures, the gaussian and mean
curvatures are calculated as G = k1 · k2 and H = 1

2
(k1 + k2).

In the discrete case it is essential to take into account the scale.

3.2 Variational methods

Two nonparametric active contour methods will be described.
Let C(q) : [0, 1] → R2 be a parametric curve (“the contour“)
and let I : [0, a] × [0, b] → R+ be an image. Both methods
are seeking to partition I into foreground and background and
both represent the parametric curve of the object boundary as
levelset (Osher , Sethian, 1988), i.e.

C = {(x, y) : φ(x, y) = 0}, (6)

which most significantly assures topology adaptivity. The first
one is based on edge localization while the second seeks to
minimize the variance among objects and background which
are assumed to be constant-valued. For brevity, only the models
will be presented; details of the minimization and its numerical
implementation can be found in the cited references.

Morphological geodesic active contours (MGAC) (Kass et
al., 1988) introduced active contours (“Snakes“) by associating
a parametric curve C to the energy

E(C) =α

∫ 1

0

|C′(q)|2dq + β

∫ 1

0

|C′′(q)|2dq

− λ
∫ 1

0

|∇I(C(q))|dq. (7)

The first term is the length of the curve, the second one is its
curvature. Both together can be used to enforce smoothness
and are referred to as internal energy. The third term attracts
the curve to edges and is called external energy. The drawbacks
mentioned in the introduction were addressed in (Caselles et al.,
1995). The authors point out that smoothness in equation 7 can
be obtained with the first term only and the second one can thus
be dropped. Furthermore they demonstrated1 that this can be

1This was criticized and clarified in (Aubert , Kornprobst, 2010).
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transformed to the equivalent problem of computing a geodesic
in Riemannian space, formally written

Min

∫ 1

0

g(|∇I(C(q))|C′(q)dq, (8)

where s : [0,∞) → R+, such that lim
r→∞

s(r) = 0. Without

giving the details of the derivation of finding the geodesic, the
boundary detection model in the levelset framework (Osher ,
Sethian, 1988) is stated as

∂φ

∂t
= s(c+ κ)|∇φ|+∇φ∇s, (9)

where φ is the levelset, t is time, κ is the curvature of the levelset
and c = const. ∈ R+. A common choice for the stopping
criterion g is the inverse gaussian gradient (IGG), defined as

sIGG =
1

1 +∇|Î|p
(10)

with p ∈ {1, 2} and Î the gaussian smoothed image.

Morphological computations were proven to be more stable
than the use of differencing equations (Caselles et al., 1995)
in (Marquez-Neila et al., 2014).

Active contours without edges (ACWE) (Chan , Vese,
2001) solve a special case of the Mumford-Shah functional, that
approximates the image as piecewise continuous signal I with
edges C. Here: I(x, y) ∈ {a1, a2}. The energy functional
for this piecewise constant model is additively composed of a
fitting term and regularization terms. The fitting term is

∫
inside(C)

|I(x, y)−a1|2dxdy+
∫
outside(C)

|I(x, y)−a2|2dxdy,

(11)

where a1 = average({I(x, y) : I(x, y) ∈ inside(C)}),
a2 = average({I(x, y) : I(x, y) ∈ outside(C)}) and C is
the boundary of an open, bounded domain. The regularisation
terms are

µ|C|+ νArea(inside(C)), (12)

where |C| is the length of the boundary, and µ, ν are weights.
The goal is to find a1, a2, C that minimize the sum of fitting and
regularization term. C is represented as levelset function. The
variational formulation requires the heavyside function

H(φ) =

{
1 , φ ≥ 0

0 , φ < 0
(13)

and one can rewrite:

|C| =
∫

Ω

|∇H(φ)| (14)

Area(inside(C)) =

∫
Ω

H(φ)dxdy. (15)

3.3 Local approach: MCWST-MGAC

The principle of the following approach is to find an initial
segment, which is refined thereafter. The steps are illustrated
in figure 3 and outlined as follows:

1. Blob detection in the DSM.
2. MCWST on the smoothed DSM using the blob centers as

markers.
3. Merge small segments to its neighbour with the longest

common boundary.
4. For each segment:

(a) Calculate a stopping criterion.
(b) Initialize the levelset.
(c) Run MGAC.

(a) DSM (b) Detected blobs

(c) Watershed segments (d) Final levelset boundaries

Figure 3. Illustration of the main processing steps of
MCWST-MGAC.

The Blob-LoG detector requires a minimum-, maximum and
step value for the scale parameter of the gaussian (cf. equation
1) to create the scale space. These are chosen to match the
expected size of the trees. Furthermore, a threshold on the
normalized filter response needs to be specified, which was
found experimentally. At last, a maximum overlap factor can
be set: when this is exceeded, smaller blobs are removed.

The DSM is smoothed with a gaussian filter of radius one prior
to MCWST. The parameter for merging of small segments was
set according to the smallest expected tree.

Two strategies can be pursued based on the initial watershed
segmentation: Strategy 1 is to expand an initial levelset which
is a contracted version of the detected blob, while the evolution
should be restricted to the watershed basin. Strategy 2 is to set
a negative balloon force to the contour of the watershed line.
In both cases the levelset can degenerate due to missing edges,
i.e. levellines that grow beyond the watershed lines or vanishing
segments, respectively. In such cases a complete fallback to the
watershed lines or a masking with the watershed segment can
be performed, respectively.
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One possibility for the stopping criterion was given in equation
10, which is suitable for the edges between canopy and ground.
For throughs between trees, better results were obtained using
inverse maximum principle curvature (IMPC). Both variants
require a scale parameter to be specified, which is estimated
by the width of the edges and throughs, respectively. Figure
3(d) shows the results using IMPC. The details of the loop are
demonstrated for both variants, using two examples: In figure
4, it can be seen that the proximity to the real edge is better
for IGG. Figure 5 shows that IMPC performs more reliable in
transition areas of neighbouring trees.

(a) DSM (b) Initial levelset

(c) IGG (d) Final levelset
using IGG

(e) IMPC (f) Final levelset
using IMPC

Figure 4. An example in favour of IGG.

(a) DSM (b) Initial levelset

(c) IGG (d) Final levelset
using IGG

(e) IMPC (f) Final levelset
using IMPC

Figure 5. An example in favour of IMPC.

3.4 Global approach: ACWE-MCWST

The underlying idea here is to use an alternative, non-local
method to create the object mask prior to watershed transform.

The steps are illustrated in figure 6 and can be enumerated as

1. Calculate a global threshold of the DSM.
2. Local histogram equalization (LHE) of the DSM,

restricted to the areas above a fraction of the threshold.
3. Gaussian smoothing of the LHE-DSM.
4. ACWE on the smoothed LHE-DSM.
5. Blob detection on the LHE-DSM, restricted to the

foreground areas of the ACWE levelset.
6. MCWST on the LHE-DSM, restricted to the foreground

of the ACWE levelset, using the blob centers as markers.

The thresholding is carried out using Otsu’s method (Otsu,
1979). In foreground areas of the percentile threshold mask,
LHE (Gonzalez , Woods, 2001) is carried out on the DSM,
with the mask size set such that it is slightly larger than the
expected minimum gap between two trees. This is followed
by one pass of gaussian smoothing with small σ(= 1, 2) of
the LHE-DSM. This preprocessing enables the application of
ACWE to the global image resulting in a final levelset. Without
LHE, the DSM violates the assumptions for the piecewise
constant image model. Here, the levelset is initialized to
a chessboard pattern. Blob-LoG detection is applied to the
LHE-DSM, masked with the levelset foreground. Identical
comments as for MGAC-MCWST apply here. The centers of
the detected blob features are used as markers for the MCWST
on the LHE-DSM, restricted to the object areas in the levelset.

4. EXPERIMENT

This section presents and evaluates the results of the methods
introduced in the previous section. In order to accomplish the
latter, the preparation of the ground truth, that corresponds to
the test plots is elucidated at first.

4.1 Groundtruth

There was not enough time and personel to carry out an
inventory of the whole area. The ground truth consists of
manually placed tree top markers. Ground truth boundaries are
not provided for several reasons: On the one hand the DSM is
partly deviating from the image. On the other hand it seems
impossible to create ground truth boundaries without having a
glance at the image as well. Likewise, the tree top markers were
identified by visual inspection of the DSM and corresponding
RGB images.

4.2 Results and accuracy assessment

Each algorithm is executed on each plot and detected trees,
omission errors and commission errors are recorded. For the
MCWST-MGAC approach strategy 1 was chosen and IMPC
was employed. The results are displayed in figure 7 while table
1 gives the accuracy. Its evaluation avoids point in polygon
testing by using the labeled DSM instead.

4.3 Discussion

The crucial factor in both methods is the blob detection,
which is improved considerably using histogram equalization.
For coniferous trees it is reasonable to expect a salient
height maximum. For deciduous trees multiple, comparatively
non-salient height maxima must be expected for a single
crown or cluster of crowns. What needs to be improved
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Method Coniferous ( 198 ) Deciduous ( 201 ) Mixed ( 235 )
MCWST-MGAC 188 / 155 / 43 / 34 166 / 132 / 69 / 34 197 / 166 / 69 / 31
ACWE-MCWST 205 / 179 / 19 / 26 189 / 152 / 49 / 37 210 / 177 / 58 / 33

Table 1. Each entry has the form ’segments / detections / omissions / commissions’. The total number of trees for each
plot is given in the column header.

.

(a) DSM (b) Local histogram
equalization

(c) ACWE levelset (d) Detected blobs

(e) Watershed segments

Figure 6. Illustration of the main processing steps of
ACWE-MCWST.

is the ambiguity of the feature detector’s response in terms
of overlapping blobs for such cases. Taking into account
the shape by means of the maxima of the distance transform
(Felzenszwalb , Huttenlocher, 2012) can improve the result in
some (e.g. trees in a row with overlap), but clearly not all cases.

Both methods accomplish to avoid, respectively correct that a
tree crown boundary is located in a valley with the following
downsides: ACWE-MCWST produces distorted (contracted)
boundaries since it is working on the DSM after local histogram
equalization. MCWST-MGAC does only produce well located
boundaries if the detection has been correct, otherwise the
initial levelset is likely to degenerate under expansion.

Thus, referring to deciduous trees and the actual goal to avoid
distorted boundaries, a feature detection approch using the blob
detector is no good choice. A straightforward attempt would
be to perform blob detection on the LHE-DSM, but to execute
MGAC on the original, slightly smoothed DSM. An alternative
would be the use of multiphase ACWEs. This has the advantage

that no feature detection is mandatory. Still, the number of
employed levelsets limits the different height sections that can
be separated. Another idea is to introdude an additional surface
term, that effectively encourages splitting in the case of shallow,
partial gaps.

MCWST-MGAC is significantly slower than ACWE-MCWST.
This seems clear because the boundary evolution is executed for
each watershed segment. Since all segments are independently
analyzed, there is however space for parallelization of the loop.
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Beucher, Serge, Lantuéjoul, Christian, 1979.
Use of Watersheds in Contour Detection.
http://cmm.ensmp.fr/ beucher/publi/watershed.pdf.

Caselles, Vicent, Kimmel, Ron, Sapiro, Guillermo,
1995. Geodesic Active Contours. International Journal of
Computer Vision, 22, 61-79.

Chan, T. F., Vese, L. A., 2001. Active Contours
Without Edges. Trans. Img. Proc., 10, 266–277.
http://dx.doi.org/10.1109/83.902291.

d’Angelo, Pablo, 2016. Improving semi-global matching:
Cost aggregation and confidence measure. ISPRS Congress
2016, XLI-B1, The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 299–304.

do Carmo, M.P., 1976. Differential Geometry of Curves
and Surfaces. Prentice-Hall.

Felzenszwalb, Pedro F., Huttenlocher, Daniel P.,
2012. Distance Transforms of Sampled
Functions. Theory of Computing, 8, 415–428.
http://www.theoryofcomputing.org/articles/v008a019.

Gonzalez, Rafael C., Woods, Richard E., 2001. Digital
Image Processing. 2nd edn, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Gougeon, Francois A., 1995. A Crown-Following
Approach to the Automatic Delineation of Individual
Tree Crowns in High Spatial Resolution Aerial Images.
Canadian Journal of Remote Sensing, Volume 21.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-43-2019 | © Authors 2019. CC BY 4.0 License.

 
48



(a) MCWST-MGAC coniferous (b) MCWST-MGAC deciduous (c) MCWST-MGAC mixed

(d) ACWE-MCWST coniferous (e) ACWE-MCWST deciduous (f) ACWE-MCWST mixed

Figure 7. Segmentation results overlaid with groundtruth. The upper/lower row show the final boundaries of
MCWST-MGAC / ACWE-MCWST for each of the test plots in yellow. The groundtruth tree trop markers are displayed

as green crosses.

Kass, Michael, Witkin, Andrew, Terzopoulos,
Demetri, 1988. Snakes: Active contour models.
International Journal of Computer Vision, 1, 321–331.
https://doi.org/10.1007/BF00133570.

Khosravipour, Anahita, Skidmore, Andrew K, Isenburg,
Martin, Wang, Tiejun, Hussin, Yousif A, 2014. Generating
pit-free canopy height models from airborne lidar.
Photogrammetric Engineering & Remote Sensing, 80,
863–872.

Krauß, T., d’Angelo, P., Schneider, M., Gstaiger, V., 2013.
THE FULLY AUTOMATIC OPTICAL PROCESSING
SYSTEM CATENA AT DLR. ISPRS - International
Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XL-1/W1, 177–183.

Kurz, F., Müller, R., Stephani, M., Reinartz, P., Schroeder,
M., 2007. Calibration of a wide-angle digital camera
system for near real time scenarios. ISPRS Hannover
Workshop 2007, The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, 1682–1777.

Kurz, Franz, 2009. Accuracy assessment of the dlr 3k
camera system. DGPF Tagungsband 18 2009.

Leitloff, Jens, Rosenbaum, Dominik, Kurz, Franz,
Meynberg, Oliver, Reinartz, Peter, 2014. An Operational
System for Estimating Road Traffic Information from

Aerial Images. Remote Sensing, 6, 11315–11341.
http://www.mdpi.com/2072-4292/6/11/11315.

Li, Z., Hayward, R., Zhang, J., Liu, Y., Walker, R., 2009.
Towards automatic tree crown detection and delineation
in spectral feature space using pcnn and morphological
reconstruction. 2009 16th IEEE International Conference
on Image Processing (ICIP), 1705–1708.

Lin, Chinsu, Lo, Chein-Shun, Thomson, Gavin, 2011.
A Textural Modification of the MMAC Algorithm for
Individual Tree Delineation in Forest Stand using Aerial
Bitmap Images. 4th International Congress on Image and
Signal Processing.

Lindeberg, Tony, 1994. Scale-Space Theory in Computer
Vision. Kluwer Academic Publishers, Norwell, MA, USA.

Marquez-Neila, P., Baumela, L., Alvarez, L., 2014.
A Morphological Approach to Curvature-Based
Evolution of Curves and Surfaces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 36, 2-17.
doi.ieeecomputersociety.org/10.1109/TPAMI.2013.106.

Osher, Stanley, Sethian, James A., 1988. Fronts
Propagating with Curvature Dependent Speed: Algorithms
Based on Hamilton-Jacobi Formulations. JOURNAL OF
COMPUTATIONAL PHYSICS, 79, 12–49.

Otsu, Nobuyuki, 1979. A Threshold Selection Method
from Gray-Level Histograms. IEEE Transactions

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-43-2019 | © Authors 2019. CC BY 4.0 License.

 
49



on Systems, Man and Cybernetics, 9, 62–66.
http://dx.doi.org/10.1109/TSMC.1979.4310076.

Perrin, Guillaume, Descombes, Xavier, Zerubia,
Josiane, 2005. Adaptive Simulated Annealing for
Energy Minimization Problem in a Marked Point
Process Application. Springer Berlin Heidelberg, Berlin,
Heidelberg, 3–17.

Persson, A., Holmgren, J., Södermann, U., 2002.
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