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ABSTRACT: 

Monitoring biomass yield in grassland is of key importance to support sustainable management decisions. Especially the high spatio-

temporal variety in grasslands requires rapid and cost-efficient data acquisition with a high spatial and temporal resolution. Therefore, 

this study aims to evaluate the comparability of UAV-based simultaneously acquired vegetation indices from a consumer-grade RGB-

camera (Sony Alpha 6000) and a well-calibrated narrow-band multispectral camera (MicaSense RedEdge-M) to estimate dry matter 

biomass yield. The study site is an experimental grassland field in Germany with four nitrogen fertilizer levels. Biomass yield and 

UAV-based data for the first cut in May 2018 was analysed in this study. From the RGB-data the Plant Pigment Ratio Index (PPR) 

and the Normalized Green Red Difference Index (NGRDI) and from the multispectral data the Normalized Difference Vegetation 

Index (NDVI) are calculated as predictors for dry biomass yield. The NGRDI and NDVI perform moderately well with cross-

validation R2 of 0.57 and 0.63 respectively, while the PPR performs better with an R2 of 0.70. These results indicate the potential of 

low-cost UAV-based methods for rapid assessment of grasslands. 

1. INTRODUCTION

Grasslands cover 40 % of the earth´s terrestrial surface and are 

of ecological and economic importance (FAO, 2010). Besides 

providing ecosystem functions such as carbon sequestration, 

grasslands are the basis of milk and meat production, but also 

play a role in biofuel production (O’Mara, 2012) Monitoring 

biomass yield throughout the growing season is of key 

importance to support management decisions on grasslands. 

Especially on intensely managed grasslands, where nitrogen 

fertilizer and manure are applied regularly, precision agriculture 

applications are beneficial to support sustainable, site-specific 

management decisions on fertilizer treatment, grazing 

management and yield forecasting to mitigate potential negative 

impacts. To support these management decisions, timely and 

accurate information is needed on plant parameters with a high 

spatial and temporal resolution. However, in highly 

heterogeneous plant communities such as grasslands, assessing 

their in-field variability non-destructively to determine e.g. 

adequate fertilizer application still remains challenging 

(Schellberg and Verbruggen, 2014). Especially biomass or yield 

estimation, as an important parameter in assessing grassland 

quality and quantity, is rather laborious. Biomass yield is mostly 

measured manually by clipping, height sticks, rising plate meters 

or ultrasonic sensors, handheld or vehicle-mounted 

(Wachendorf, 2017). Thus, the in-field variability cannot be 

assessed for the entire field or only with potential disturbances 

and the measurements are prone to subjective judgements. 

The rapid development in platform and sensor technology, e.g. 

miniaturization and cost-efficiency of multispectral cameras and 

more user-friendly platforms (UAVs), open up a new spatial 

scale for environmental and agricultural studies and offer a cost 

efficient and near-real time assessment of biomass yield with 

high temporal and spatial resolution (Aasen et al., 2018). 
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Vegetation indices derived from aerial RGB images to predict 

biomass in crops have been investigated in only a few studies 

(e.g. Bendig et al. 2015, Hunt et al. 2005, Jannoura et al. 2015). 

Recent studies deployed UAV-based multispectral or RGB 

cameras to assess grassland biomass with good results (Lussem 

et al., 2018; Viljanen et al., 2018).  

In this contribution we want to evaluate simultaneously acquired 

RGB-based vegetation indices from a consumer-grade RGB-

camera and a well-calibrated narrow-band multispectral camera 

to estimate dry biomass yield on an experimental grassland field 

in Germany. 

2. MATERIAL & METHODS

The study site was established in 2017 on a conventionally 

managed grassland field (0.5 ha-1) in Germany (Bergisches Land 

region, North Rhine-Westphalia). The fertilizer treatments (0, 50, 

100, 150 kg N ha-1, subsequently N1, N2, N3, N4) are applied in 

a chessboard-like pattern with 39 replicates per treatment, 

resulting in 156 plots of 36 m2. The cutting regime of three cuts 

per year was kept according to the local farming pattern. For this 

contribution we will focus on the second sampling date (May 25) 

of the first growth in 2018. Aerial images were acquired 

simultaneously with a Micasense RedEdge-M multispectral 

camera (MicaSense Inc., Seattle, WA, USA) and a Sony Alpha 

6000 camera The MicaSense RedEdge-M camera is equipped 

with five distinct cameras (each 1.2 Megapixel, 47.2 ° HFOV) in 

the visible to near-infrared region (Table 1). Additionally, the 

camera has a downwelling light sensor (irradiance sensor) and a 

GPS. Prior and directly after the flight a grey reference panel was 

captured with the MicaSense RedEdge-M. 
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Figure 1. Location of test-site (data source: ESRI Basemaps, 

Eurostat). Inset map: Orthomosaic of test site. 

 

Band name Center Wavelegth 

[nm] 

Bandwidth 

[nm] 

Blue 475 20 

Green 560 20 

Red 668 10 

Red Edge 717 10 

Near Infrared 840 40 

Table 1. Band specifications of the MicaSense RedEdge-M 

camera. 

The Sony Alpha 6000 is a standard RGB-camera (24 Megapixel). 

Both cameras were mounted simultaneously on a multirotor 

UAV (MK Oktokopter XL with 2-axis gimbal). The flying height 

was set to 35 m above ground level resulting in a ground 

sampling distance (GSD) of ~ 2.3 cm for the RedEdge-M, and ~ 

0.7 cm for the Sony Alpha 6000. Images were acquired around 

11 a.m. with stable illumination conditions. 

For precise georeferencing of the images 15 ground control 

points (GCPs) were distributed across the test-site and measured 

with an RTK-GPS (Topcon GR5). 

Image data was processed in the Structure-from-Motion software 

Photoscan v1.4 (Agisoft LLC, St. Petersburg, Russia). At least 

10 markers per GCP were placed. After image alignment (high 

quality setting) the dense cloud was computed (high quality 

setting with mild depth filtering). The Micasense RedEdge-M 

dataset was calibrated by the calibrate reflectance function in 

Photoscan, using the calibration factors of the irradiance sensor 

and the grey reference panel. Subsequently one orthomosaic per 

sensor was exported with a spatial resolution of 2.5 cm. 

Index calculation was performed in ArcGIS Pro v2.2 (ESRI, 

Redlands, CA, USA).  

 

VI Name Equation Reference 

PPR 
(G – B) / 

(G + B) 
Metternicht 2003 

NGRDI 
(G – R) / 

(G + R) 
Tucker 1979 

NDVI 
(NIR – R) / 

(NIR + R) 
Rouse et al. 1974 

Table 2. Vegetation indices used in this study. B = blue band, G 

= green band, R = red band, NIR = near infrared band. 

From the RGB-based orthomosaic the Plant Pigment Ratio (PPR) 

and Normalized Green Red Difference Index (NGRDI) were 

derived and from the multispectral orthomosaic the well-known 

Normalized Difference Vegetation Index (NDVI). 

The indices were averaged per plot by calculating zonal statistics 

using a polygonal shapefile for each plot with an inside buffer of 

0.5 m to account for border effects. Biomass samples (n: 156) 

were upscaled to dry matter yield kg ha-1. Linear Regression 

analysis was performed to test the relationship between dry 

matter yield and the above-mentioned vegetation indices. 

Analysis was performed in the statistical computation software R 

v3.5 (R Core Team 2013). To assess the predictive performance 

of the VIs, leave-one-out cross-validation was implemented in 

the regression analysis using the caret-package (Kuhn et al., 

2018). Prediction accuracy was quantified by calculating the 

coefficient of determination (R2) and root mean squared error 

(RMSE). 

 

3. RESULTS 

Table 3 displays the descriptive statistics for dry biomass yield 

in kg / ha. The response of biomass to the fertilizer treatments is 

clearly distinguishable, although the variety between N3 and N4 

is less pronounced. 

 

 Dry biomass yield [kg / ha] 

 
Mean Median Min Max SD 

N1 1199.56 1164.59 706.82 2051.55 247.98 

N2 1990.20 1987.08 1340.77 2462.87 217.10 

N3 2578.52 2523.47 2077.27 3375.84 278.80 

N4 2789.59 2813.01 2108.69 3425.19 312.39 

Table 3. Descriptive statistics of dry biomass yield for each 

treatment (SD: standard deviation). 

 

A more detailed view of the orthomosaics is provided in Figures 

2 and 3. The pattern of the treatments is clearly visible, also the 

high similarity of treatments N3 and N4. 

 

 

Figure 2. Detailed view of Micasense RedEdge-M based 

orthomosaic (band order 5-4-3). Numbers inside polygons 

indicate treatments. 
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Figure 3. Detailed view of Sony Alpha 6000 based orthomosaic. 

Numbers inside polygons indicate treatments. 

 
Figure 4. Detailed view of Micasense RedEdge-M based NDVI 

map. 

 
Figure 5. Detailed view of Sony Alpha based PPR map. 

 

In Figure 4 and Figure 5 a more detailed view of the NDVI and 

NGRDI maps are displayed. The treatment pattern is less 

pronounced in the NDVI map compared to the NGRDI map. For 

the RGB-based PPR the values are reversed in comparison to the 

visual appearance and DBY. Higher biomass values correspond 

to lower index values. The spatial pattern of the treatments is 

more pronounced in the PPR map. 

The relationship of NDVI and PPR to dry biomass yield is 

depicted in Figures 6 and 7.  

 

 
Figure 6. RGB-based Plant Pigment Ratio (PPR) vs. dry 

biomass yield (DBY). 

N1: 0 kg N ha-1, N2: 50 kg N ha-1,  

N3: 100 kg N ha-1, N4: 150 kg N ha-1. 

 

 
Figure 7. VNIR-based Normalized Difference Vegetation Index 

(NDVI) vs. dry biomass yield (DBY).  

N1: 0 kg N ha-1, N2: 50 kg N ha-1,  

N3: 100 kg N ha-1, N4: 150 kg N ha-1. 

 

The PPR showed a strong negative relationship to DBY with an 

R2 of 0.71. The four treatments are clearly visible in the 

scatterplot (Fig. 6). Higher DBY values are associated with lower 

PPR values and vice versa. The relationship of NDVI to DBY 

shows strong saturation effects for higher biomass values. 

The cross-validation results are displayed in Figures 8, 9, and 10. 
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Figure 8. Measured versus predicted dry biomass yield [kg / ha] 

for NDVI. 

 
Figure 9. Measured versus predicted dry biomass yield [kg / ha] 

for PPR. 

 
Figure 10. Measured versus predicted dry biomass yield [kg / 

ha] for NGRDI. 

The R2 for the NDVI was 0.63 with an RMSE of 408.30 kg / ha. 

The PPR had a R2 of 0.70 with an RMSE of 364.42 kg / ha and 

the NGRDI a R2 of 0.57 with a RMSE of 440.83 kg / ha. 

The pattern between measured and predicted DBY was linear for 

the PPR, although there was still variation across the regression 

line. The pattern of the treatments was more pronounced, while 

N3 and N4 are not distinguishable. 

The NGRDI cross-validation result had a similar pattern to the 

NDVI with saturation effects for the higher fertilized plots. 

 

4. DISCUSSION & CONCLUSION 

The aim of this study was to compare simultaneously acquired 

high resolution RGB and VNIR vegetation indices to predict dry 

biomass yield in temperate grassland. The results indicate a 

promising approach to map grassland biomass in high spatial and 

temporal resolution with consumer-grade RGB cameras. The 

RGB-based PPR performs well as an indicator of grassland 

biomass. The lower DNs in the green band and the slightly higher 

DNs in the blue band of the higher N treatments are linked to 

carotenoids and chlorophyll. This might explain the better 

performance of the PPR compared to the NGRDI and NDVI. 

(Metternicht, 2003). The PPR can distinguish the first (0 kg N/ha) 

and second (50 kg N/ha) treatment, although it fails to distinguish 

between the third (100 kg N/ha) and fourth (150 kg N/ha) 

treatment, similarly to the NGRDI and NDVI. The performance 

of the NGRDI was similar to the results reported by Lussem et 

al. (2018) on the same test site, but for a different year. Hunt et 

al. (2005) reported a good correlation of the NGRDI to alfalfa, 

corn and soybean biomass, but observed saturation effects for 

higher biomass yield, which is similar in this study and can be 

related to Motohka et al. (2010), who observed that RGB-based 

VIs are limited to certain growing stages. Although the NDVI 

yields a slightly better cross-validation result than NGRDI, 

strong saturation effects are clearly visible.  

Further investigations should be directed towards the evaluation 

of high-resolution RGB-based VIs to assess grassland biomass 

for multiple years, sites and cutting regimes. A combination of 

spectral features and structural features such as plant height from 

canopy surface models to predict grassland biomass already 

shows promising directions to support precision pasture 

management (Viljanen et al., 2018).  
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