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ABSTRACT:  

 

Vegetation mapping requires information about trees and underlying vegetation to ensure proper management of the urban and forest 

environments. This information can be obtained using remote sensors. For instance, lightweight systems composed of Unmanned 

Aerial Vehicles (UAVs) as a platform, low-cost laser units and the recent miniaturized navigation sensors (positioning and orientation) 

have become a very feasible and flexible alternative. Low-cost UAV-ALS systems usually provide centimetric accuracy in altimetry, 

according to flight data configuration and quality of observations. This paper presents a feasibility study of a lightweight ALS system 

on-board a UAV to estimate the diameters at breast height (DBH) of urban trees using LiDAR data and linear regression model. A 

mathematical model correlating the crown diameter and height of the tree to estimate the DBH was developed based on a linear 

regression with stepwise method. The stepwise linear regression method enables the addition and the removal of predictor variables 

through statistical tests. The tree samples were separated in two classes (A and B), according to the diametric distribution. These sample 

classes were used to define two linear regression models. The regression models that best fit the samples achieved an R² adj value 

above 94% for class A and B, which demonstrates the closeness between the samples and the developed mathematical models. The 

quality control of the proposed regression models was performed comparing the DBH values estimated and directly measured 

(reference). DBH of the trees were estimated with an average discrepancy of 8.7 cm.   
 

 

1. INTRODUCTION 

Diameter at Breast Height (DBH) is an important dendrometric 

variable that contributes to several forest and urban vegetation 

monitoring tasks, such as tree growth, volume, basal area and 

biomass estimation, for forest inventory and management 

(Kershaw et al., 2016). DBH estimation is usually performed 

manually using tapelines, calipers and other instruments. This 

manual data collection is labour-intensive, time consuming, 

costly and more disposed to gross error. As an alternative, DBH 

can be estimated by indirect measurements, for instance, using 

remote sensors and mobile platforms. Several approaches could 

be developed combining different sensors, platforms and data 

processing methodologies. This work focused on the use of 

LiDAR data from Airborne Laser Scanning (ALS) systems for 

DBH estimation.   

 

ALS is the sensor most used in the acquisition of forest data. The 

penetrability of the laser beam associated with the record of 

multiple returns makes the ALS systems an important tool for 

data acquisition and 3D representation. However, conventional 

airborne ALS are still high-cost systems, especially when used as 

an operational tool for forest management. Recently, lightweight 

low-cost sensors have available on the market and have 

motivated much research in the development of low-cost ALS. 

                                                                 
*  Corresponding author 

 

Unmanned Aerial Vehicles (UAVs) can be combined to 

miniaturized laser scanning and navigation sensors, resulting in 

fast, flexible, low-cost ALS systems. Research focusing on the 

estimation of DBH using low-cost ALS on-board a UAV can be 

singled out (Jaakkola et al., 2010; Wallace et al., 2012 and Guo 

et al. 2017).  

 

Jaakkola et al. (2010) presented a low-cost mini-UAV-based 

laser scanning system (FGI Sensei) composed of a GPS/IMU 

positioning system, two laser scanners (Ibeo LUX and Sick 

LMS151), a CCD camera, a spectrometer and a thermal camera. 

These authors proposed an automatic estimation of the DBH 

based on the random forest algorithm (nonparametric regression) 

using UAV-LiDAR data. The DBH was estimated with an RMSE 

(Root Mean Square Error) of 2.1 cm. Wallace et al. (2012) carried 

out a data acquisition using a UAV-ALS system composed by an 

Ibeo LUX laser unit, MEMS based IMU, GPS receiver and a 

video camera on-board an Oktocopter UAV platform. In this 

work, dendrometric variables of individual trees in a sparse 

environment were estimated from a UAV-ALS point cloud with 

centimetric accuracy (0.34 m). Tree heights were predicted with 

a precision of 0.26 m using an ALS point cloud with a density of 

8 points per m2. More recently, Guo et al. (2017) evaluated the 

correlation between aboveground biomass (AGB) and DBH, 

using a linear regression method and LiDAR data. The LiDAR 
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data was also obtained from a low-cost UAV-ALS system using 

a Velodyne Puck VLP-16 laser scanner. The Canopy Height 

Model (CHM) of a mangrove forest derived from the UAV-ALS 

was generated with 1-meter accuracy.  

 

These related works mentioned above show that UAV-ALS 

approaches can provide a satisfactory 3D reconstruction of trees, 

which can be regarded as an alternative to the conventional ALS 

for forest management. In this regard, this paper presents a 

feasibility study of a lightweight ALS approach on-board a UAV 

to estimate tree height, crown diameter and DBH from a CHM 

derived from the UAV-LiDAR data. The proposed UAV-ALS is 

detailed in Section 2. The trees DBH were estimated with a 

mathematical model based on a linear regression that uses 

stepwise method to correlate DBH with the Crown diameter (Cd) 

and Total height (Ht) of the trees (Section 3). Experimental 

assessment and results of the feasibility study are presented and 

discussed in section 4. 

 

2. UAV-LIDAR SYSTEM AND MATHEMATICAL 

MODEL 

The lightweight UAV-ALS system used in this paper is 

composed of an Ibeo LUX laser unit (Figure 1.b), a IMU/GNSS 

SPAN–IGM–S1 (Inertial Measurement Unit /Global Navigation 

Satellite System) with a NovAtel-FlexPak6 GNSS receiver 

(Figure 1.c) and two microcomputers (Raspberry Pi, Figure 1.d) 

integrated with an octopter UAV (SX8 model). The use of the 

Ibeo LUX laser unit was motivated by its compact structure 

(164.5 x 93 x 88 mm) with a weight less than 1 kg, and the 

measurement-range from 0.3 to 200 m. The nominal ranging 

resolution of this laser unit is 4 cm in terrestrial application. 

However, considering UAV platforms, an average altimetric 

accuracy of 10 cm is achieved, as presented by Jaakkola et al., 

(2010), Wallace et al., (2012) and Torres and Tommaselli (2018).   

 

The UAV-LiDAR devices were synchronized using a post-

processing synchronization (offline) with a precision of 0.7 ms. 

The process of point cloud generation was implemented in the 

C++ language, developed by Torres and Tommaselli (2018). 

Figure 1.a illustrates the proposed lightweight UAV-ALS 

system. 

 

 
Figure 1. Lightweight low-cost UAV-ALS system: (a) UAV-

ALS system; (b) Ibeo LUX unit; (c) navigation system and (d) 

recording unit (Raspberry Pi). 

 

The laser mathematical model used to generate the UAV-ALS 

point cloud is presented in Equation 1 (El-Sheimy et al., 2005, 

adapted by Torres and Tommaselli, 2018).    

  𝑟𝑖
𝑔

= 𝑟𝐺𝑁𝑆𝑆
𝑔 (𝑡) + 𝑅𝐼𝑀𝑈

𝑔 (𝑡)𝑟𝑈𝐿
𝐼𝑀𝑈 + 𝑅𝐼𝑀𝑈

𝑔
(𝑡)𝑅𝑈𝐿

𝐼𝑀𝑈𝑅𝐷𝐸
𝑈𝐿 (𝑡)𝜌𝐼    (1)   

                  

Where:  𝑟𝑖
𝑔

  is the vector of ground coordinates of point i;  

𝑟𝐺𝑁𝑆𝑆
𝑔 (𝑡) is the vector of the ground coordinates of the GNSS 

antenna at instant t, reduced to the IMU coordinate system;  

𝑅𝐼𝑀𝑈
𝑔 (𝑡) is the rotation matrix relating the ground and IMU 

coordinate systems at instant t, derived after processing the 

GNSS and IMU data;  

𝑟𝑈𝐿
𝐼𝑀𝑈 corresponds to the offset between the laser unit and IMU 

origin (lever-arm);  

𝑅𝐷𝐸
𝑈𝐿  is the rotation matrix relating the laser unit coordinates 

system and the laser emitting devices (mirror scans angles) at 

instant t (as the laser unit used in this research scans four 

horizontal layers, the rotation matrix is expressed as a function of 

two angles β and θ);  

𝜌𝐼 is the vector of the coordinates of point i expressed in the 

emitting device reference system. 

𝑅𝑈𝐿
𝐼𝑀𝑈is the rotation matrix that relates the laser unit and IMU 

coordinate systems as a function of the approximate angles 

directly measured (∆𝜅, ∆𝜑, ∆𝜔). The initial values  

𝑅𝑈𝐿
𝐼𝑀𝑈elements are given as: ∆𝜅 = -90º, ∆𝜑 = -90º, and ∆𝜔 = 0º. 

 

The LiDAR point cloud obtained with the proposed UAV-ALS 

system can be used to generate Digital Terrain Models (DTM), 

Digital Superficies Model (DSM), CHM for forest and other 

applications. The CHM enables the estimation of tree parameters, 

such as total tree height, crown diameter and the indirect 

prediction of DBH using statistical mathematical models, such as 

regression-based methods. A stepwise linear regression 

algorithm is an option to develop a mathematical model, selecting 

a set of optimal predictor variables to estimate a response 

variable. The methodology to predict DBH from individual trees 

using a stepwise linear regression algorithm is described in the 

next section. 

 

3. A METHODOLOGY FOR DBH ESTIMATION USING 

LINEAR REGRESSION 

According to Hair et al. (1998), multivariate analysis techniques 

enable simultaneous analysis of multiple measures from 

individuals or objects under investigation, helping users in 

decision-making. Multivariate measurements can be modelled 

with multiple linear regression models which consider one 

response variable for two or more predictor variables (Johnson 

and Wichern, 2007). Therefore, the linear regression method 

enables the development of mathematical models to predict 

response variables (dependent) considering the relationship with 

predictor variables (independent or explanatory).  

 

Multiple linear regression models are extensively applied in 

environmental sciences. McGarigal et al. (2013) mentioned that 

multivariate analysis techniques can reflect the multidimensional 

and multivariate nature of ecological systems considering the 

statistical significance of the relationship between the predictor 

and response variables. Therefore, tree parameters are widely 

modeled using multivariate-based methods. For instance, the 

relations obtained by linear models enabled the estimation of 

dependent variables that are difficult to obtain with direct 

measurements, such as volume, biomass and crown diameter, 

from independent variables such as total height, DBH and their 

respective transformations (Kozak, 1970; Payandeh, 1983). 

 

In this regard, this section presents a methodology to define a 

mathematical model to estimate indirectly the DBH of individual 

trees in an urban area. This methodology is based on a linear 

regression applied to jackknife samples (Efron and Tibshirani, 
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1993), in which the subset of predictor variables used in the final 

equation can be found, e.g., by a stepwise procedure (Johnson 

and Wichern, 2007). The stepwise method was used to determine 

a mathematical model that correlates DBH with the crown 

diameter and total height of the tree in urban areas. The proposed 

methodology can be summarized in two steps: the arrangement 

of the samples in classes considering the diametric distribution 

(DBH size) and mathematical model determination combining a 

delete-one jackknife approach with the stepwise method.  

 

Two main challenges are to be noted in tree mapping in urban 

areas. First, urban areas are generally composed of heterogenous 

tree species, which hinders linear regression modelling due to the 

absence of a standard behavior. Therefore, the set of trees in the 

test area can be separated in classes, for instance, in function of 

the DBH dimension or the tree species, generating different linear 

models for each class of trees in the test area. Second, urban areas 

are composed of small samples of trees, especially compared to 

forest areas. Thus, a delete-one jackknife approach was evaluated 

for establishing statistical models and to enhance predictions for 

data sets with few observations (here < 10). The jackknife 

focuses on the sample that leaves out one observation at a time. 

A set of the observations (n-1), called training set, will be used to 

build a model by stepwise procedure and validating the analysis 

of the observation left out (cross-validation). This process is 

performed iteratively, in which the ith jackknife sample consists 

of the data set with the ith observation removed (Efron and 

Tibshirani, 1993). The set of jackknife sample that provides the 

smallest error in the cross-validation is used to define the 

mathematical model.  

 

The stepwise method is applied for each set of jackknife sample 

to select the predictor variables for the mathematical model that 

best represents the response variable. In a model with only one 

predictor variable, 𝛽0 is the point where the line intersects the y-

axis (intercept) and 𝛽1 is the angular coefficient (slope) that 

indicates the variation of the mean of Y according to the increase 

of a unit from the X variable. More details about the stepwise 

method can be found in Johnson and Wichern (2007). The 

multiple regression model is described by Equation 2. 

 

𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝  + 𝜀                (2) 

                            

Where:  𝑌 is the value of the response variable; 

𝑋𝑗  is the value of the predictor variable with j values 

ranging from 1 to p; 

𝛽𝑗  is the regression coefficients or parameters of the 

mathematical model (j = 1, 2, …, p); 

𝜀 is the error or residual in the adjustment of the linear 

regression model.  

 

The stepwise method generates different sets of parameters. The 

model that best explains the response variable is chosen 

according to a statistic criterion, for instance, considering the 

adjusted coefficient of multiple determination (R²adj) and the P-

value. R²adj was used to explain the percentage of adjustment of 

the variables to the model, while, the P-value is used to evaluate 

the significance of a predictor variable, considering a level of 

significance (α) as reference. A significance level (α) of 0.05 was 

considered to estimate the significance of the variables that will 

compose the mathematical model to estimate the DBH. 

Therefore, a variable with a P-value higher than α is considered 

a predictor variable in the model, otherwise, the variable is 

removed from the model. In addition to this analysis, regression 

coefficients were also evaluated, which describe the size and 

direction of the relation between a predictor variable and the 

residuals of the observations. 

 

After this process, linear regression models were generated for 

each class of trees considering the combination of predictor 

variables to estimate each tree DBH (response variable). The total 

height, the crown diameter and their variations are used as 

predictor variables to develop the linear regression mathematical 

model. These predictor variables were indirectly measured using 

the LiDAR data obtained with the proposed UAV-ALS system. 

LiDAR data acquisition and processing (Section 4.1), the 

estimation of predictor variations (Section 4.2) and the evaluation 

of the linear regression mathematical model (Section 4.3) are 

presented in Section 4.   

 

4. EXPERIMENTS AND RESULTS 

4.1 Data Acquisition and Processing  

 

The data set was collected with a UAV-ALS system in an urban 

area located at São Paulo State University campus (UNESP), in 

Presidente Prudente (22°07’S, 51° 24’ W), Brazil.  The flight 

height used to collect the data set was approximately 35 meters, 

with a flight speed of 4 m/s. The lateral overlap between flight 

strips ranges from 60% to 80%, in a north-south direction. Two 

strips were used to generate the point cloud (Figure 2). The point 

cloud accuracy was 0.28 m in planimetry and 0.1 m in altimetry. 

The average density of the point cloud was 11.65 points per m².  

 

 
Figure 2. UAV- LiDAR point cloud: (a) three-dimensional view 

of the point cloud and (b) lateral profile showing mainly the 

structure of a tree. 

 

4.2 Estimation of Predictor Variables and Linear Regression 

Model Determination 

 

The UAV-LiDAR data was used to generate a CHM, enabling 

the indirect estimation of the total heights and the crown 

diameters of the trees mapped in the test area. The CHM was 

generated in a two-step process: first, the generation of DTM and 

DSM, and then the estimation of the difference between them, 

which results in a CHM. The generation of DTM and DSM were 
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performed using LASTools software, which are presented in 

Figure 3.a and Figure 3.b, respectively.  

 

         
                     (a)                                            (b)                          

Figure 3. Digital Terrain Model and Digital Surface Model used 

for CHM generation. 

 

The difference between DSM and DTM was performed using the 

free software Quantum Gis 3.2.3. The height of the CHM 

obtained ranges from 0 to 15.31 m. The maximum height is 

compatible with the highest tree identified in the test area.  

Predictor variables (total heights and crown diameters of the 

trees) were then extracted from the CHM. The height of the 

canopy was measured in the CHM considering the central axis of 

each tree. The crown diameter was obtained calculating the mean 

of the largest and smallest axis of the tree.  

 

CHM assessment was carried out comparing the heights obtained 

from the CHM with the tree heights directly measured in a field 

survey. The direct measurements were taken using a tacheometer 

(Imaging Total Station GPT-7005i, Figure 4), providing 

reference height values with centimetric accuracy. The statistical 

mean, standard deviation, and RMSE of the discrepancies 

between the tree heights estimated from the CHM and the 

reference data (tacheometry) were 0.08 m, 0.236 m and 0.236 m, 

respectively. The accuracy of the estimated tree heights can be 

regarded as compatible with the results obtained by Wallace et 

al. (2012), which reached 0.26 m. This result can be explained by 

the similarity between the point clouds, in terms of altimetric 

accuracy (10 cm and 15 cm) and density (11 and 8 points per m2). 

The CHM accuracy can be improved by increasing the point 

cloud density, as also discussed by Wallace et al. (2012).  

 

The predictor variables obtained from the CHM (Ht, Cd, ln Ht, 

ln Cd, Ht², Cd²) were used to define the linear regression model 

that best fit the data set. The trees composing the data set are 

illustrated in Figure 4. The non-homogeneous features in the 

same area are a predominant behaviour in urban areas with a 

diversity of species. This species diversity, with different sizes of 

crown, trunk diameter and total height, hinders the generation of 

a single linear regression model. A preliminary assessment was 

carried out considering the complete data set to fit the linear 

regression model, resulting in high errors in DBH estimation. The 

set of trees in the test area was therefore separated into two 

classes as a function of the DBH dimension. Class A with 

diameters ranging from 0.10 m to 0.3 m, and Class B with 

diameters higher than 0.3 m, resulting in two linear regression 

models. 

 

 

 

 
Figure 4. Features of the trees belonging to the test area. 

 

Six sets of jackknife samples, with four observations each, were 

assessed based on the error estimated in the cross-validation for 

class A and class B. The training set used to define the final 

mathematical model by the stepwise method is presented in Table 

3. The predictor variables Cd, Ht and their variations were 

assessed by the stepwise method. According to the p-value 

presented in Table 1, the predictor variable Neperian logarithm 

of Cd (ln Cd) was considered significant for class A and class B 

for a significant level (α) of 0.05. The regression mathematical 

models that best fit the jackknife samples (training set) for class 

A and class B are presented in Equation 3 and Equation 4, 

respectively. 

 

                           𝐷𝐵𝐻 = 32.19 − 7.15 ln 𝐶𝑑                          (3) 

 

                          𝐷𝐵𝐻 = −104.3 + 90.5 ln 𝐶𝑑                        (4) 

 

The estimated coefficients (Coef.) presented in Table 1 describe 

the size and direction of the relation between predictor and 

response variable. The negative coefficient indicates that a 

smaller crown diameter of the tree will result in a higher DBH for 

class A. In class B, the significant variables (ln Cd) describe a 

more stable relation between DBH and crown diameter, 

considering more mature trees with a greater diameter.  

 

CLASS Term Coef. P-value 

A 
Constant 32.19 0.003 

Ln Cd -7.15 0.017 

B 
Constant -104.3 0.053 

Ln Cd 90.5 0.017 

Table 1. P-value and regression coefficients of the adjusted 

model for classes A and B. 

 

Table 2 presents the precision (Std) and the adjusted coefficient 

of multiple determination (R² adj) of the mathematical model 

obtained in the stepwise process. The precision (Std) of the 

regression models presented in Equations 3 and 4 were 0.89 cm 

and 10.45 cm, respectively. The result for class B can be 

associated to the high variability of the DBH of trees. Class A 

presented more similar tree diameters, ranging between 13 cm 

and 26 cm, which was better modeled by the linear regression 

than the samples from class B. The DBH in class B ranges 
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between 0.35 m to 1.41 m. The values of R² adj shows that the 

predictor variable describes more than 94% of the variability of 

the DBH model in class A and class B. 

 

Class Std R² (adj) 

A 0.89 94.92% 

B 10.45 94.89% 

α to enter = 0.05; α to remove = 0.05 

Table 2. Precision (Std) and the adjusted coefficient of multiple 

determination (R² adj) resulting from the stepwise method for 

class A and class B. 

 

Table 3 shows the jackknife samples used to define the regression 

mathematical model for class A and class B. The residuals (ε) of 

the model were computed considering the difference between the 

DBH estimated with the proposed mathematical models and the 

sample values directly measured. The average of the residuals is 

close to zero (0.01 cm), showing the absence of systematic errors.  

 

Class Tree 

DBH (cm) 

Sample 

values 
Estimated ε 

A 

4 22.09 21.23 0.86 

6 13.31 13.11 0.20 

10 21.26 21.44 -0.18 

11 18.49 19.38 -0.89 

B 

2 87.00 74.54 12.46 

3 50.13 57.26 -7.13 

7 38.99 41.22 -2.23 

9 141.62 144.37 -2.75 

Table 3. Samples of trees used to define the linear mathematical 

models to estimate DBH for class A and class B. 

 

4.3 Assessment of the Linear Regression Model 

 

The assessment of the regression models was carried out 

comparing the estimated DBH with direct measurements 

performed in a field survey (in loco). The reference values were 

obtained with a centimetric accuracy using a calliper. The DBH 

measurements used in the quality control were not used for the 

regression mathematical model estimation (independently 

observed). The models were generated with four observations 

and validated with one observation, due to the low number of 

samples. DBH was estimated with a difference of 8.84 cm for 

Class A and 8.47 cm for Class B, considering the discrepancies 

between the estimated and reference DBH values, as presented in 

Table 4.  

 

These results using a data set collected by lightweight ALS-

system can be compared to results that estimate DBH at plot level 

using conventional ALS data in areas with heterogeneous trees. 

Many studies used LiDAR data from conventional ALS to 

measure predictor variables, such as total height and crown 

diameter, aiming at an estimation of DBH (response variable) 

with a linear regression model. For instance, Ibanez et al. (2016) 

used linear regression models with LiDAR data to estimate DBH 

at plot levels of tropical forests. The r² of the adjusted model was 

0.70; 0.83 and 0.72 for the three plots tested with 5x5 m², 10x10 

m² and 2x20m³ respectively. Accuracies (RMSE) of 6.08 cm; 

2.63 cm and 2.60 cm were obtained for these three plots. DBH 

estimation in plot level experiments usually presents better 

results than experiments considering individual trees. The 

proposed methodology also estimated DBH with centimetric 

accuracy.   

The discrepancy presented by class A (tree diameter < 0.3) and 

class B (tree diameter > 0.3 m) can be considered compatible. 

Both classes achieved a discrepancy between the estimated DBH 

and the reference of approximately 8 cm. These discrepancies can 

be associated with tree maturity. The DBH estimation is a 

challenge for trees that are still developing. Furthermore, the test 

area is composed of urban trees from different species and 

heterogeneous features, as presented in Figure 4. Homogeneous 

forests present a similar tree structure, enabling better results, 

which is the case in the boreal forest presented by Jaakkola et al. 

(2010).   

    

Class Tree 
DBH (cm) 

Reference Estimated ΔDBH 

A 5 26.29 17.45 8.84 

B 8 43.16 34.69 8.47 

Table 4. The linear mathematical model assessment by cross-

validation for class A and class B. 

 

5. CONCLUSIONS 

 

This paper presented a feasibility study on the use of data 

generated by a lightweight ALS system on-board a UAV to 

estimate tree heights and DBH from a CHM derived from the 

point cloud. Tree heights were estimated with an accuracy of 0.23 

m, which reflects the consistency of the CHM generated by the 

proposed ALS system. These results are similar to the accuracy 

presented by Wallace et al. (2012). The DBH variable was 

estimated by linear regression, according to two classes of tree 

determined in function of diametric distribution. Class A 

presented a discrepancy of 8.84 cm for trees with diameters 

ranging between 0.1m and 0.3 m and class B present 8.47 cm for 

larger diameter trees (> 0.3 m). Despite the species variability 

and the small sample size in the test area, this work presented 

preliminary results demonstrating the feasibility of the proposed 

UAV-ALS system in the estimation of the DBH of individual 

trees, with centimetric accuracy. In future works, experiments 

with larger sample areas and with lower flight heights will be 

performed to improve the results.  
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