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ABSTRACT:  
 

Tree species classification at individual tree level is a challenging problem in forest management. Deep learning, a cutting-edge 

technology evolved from Artificial Intelligence, was seen to outperform other techniques when it comes to complex problems such as 

image classification. In this work, we present a novel method to classify forest tree species through high resolution RGB images 

acquired with a simple consumer grade camera mounted on a UAV platform using Residual Neural Networks. We used UAV RGB 

images acquired over three years that varied in numerous acquisition parameters such as season, time, illumination and angle to train 

the neural network. To begin with, we have experimented with limited data towards the identification of two pine species namely red 

pine and white pine from the rest of the species. We performed two experiments, first with the images from all three acquisition years 

and the second with images from only one acquisition year. In the first experiment, we obtained 80% classification accuracy when the 

trained network was tested on a distinct set of images and in the second experiment, we obtained 51% classification accuracy. As a 

part of this work, a novel dataset of high-resolution labelled tree species is generated that can be used to conduct further studies 

involving deep neural networks in forestry. 

 

 

1. INTRODUCTION 

  

Tree species diversity is an important aspect in the study of forest 

ecosystems. Applications in conservation and sustainable 

management of forests such as forest inventories, monitoring of 

biodiversity, wildlife habitat modelling, hazard management and 

climate change studies are largely based on tree species 

classification. Most of the existing methods for tree species 

classification are constrained by portability, restricted to specific 

species or requiring large datasets for adaptation to a new site, 

which limits their applicability and makes them cost-intensive. 

(Fassnacht et al., 2016) Recently, given the flexibility of 

acquiring data anytime, anywhere with limited logistics, 

unmanned aerial vehicles (UAV) are becoming an essential tool 

in gathering ultra-high resolution imagery on forests for detailed 

characterization of canopies in contrast to any other higher 

platform. These have the potential to acquire large datasets at 

close range needed to train algorithms. Thus, many researches 

have focused on the use of UAV imagery for tree species 

classification. For example, Gini et al. (2018) investigated if the 

use of texture features, derived from UAV multispectral imagery, 

can improve the accuracy of tree species classification. Franklin 

and Ahmed (2018) have used UAV multispectral images 

acquired over forests to successfully classify few tree species by 

means of a machine-learning classifier which was found effective 

in separating individual crowns with spectral response, textural, 

and crown shape variables. UAV images have also been used to 

separate forest species and dead trees in temperate forest stands 

(Brovkina et al., 2018). 

 

Recent advancement in deep learning has gained attention for 

several image classification tasks (Dyrmann et al., 2016; Ji et al., 

2018; Li et al., 2017; Scott et al., 2017). One of the main 

advantages of deep learning approaches is that, they do not need 
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manual feature extraction, unlike other machine learning 

algorithms. This drastically reduces data preparation and reduces  

 

observer bias. In regards to forest mapping, few studies have 

explored the ability of Convolutional neural networks (CNN) for 

tree species classification from images collected by different 

methods. CNNs have been demonstrated to classify tree species 

using pictures of cross-section surfaces of the trees captured by a 

regular digital camera (Hafemann et al., 2014), terrestrial lidar 

data (Mizoguchi et al., 2017), RGB images of bark (Carpentier et 

al., 2018), airborne Light Detection and Ranging (LiDAR) data 

(Ko et al., 2018) and RGB images from UAVs to classify broad 

species types (Onishi and Ise, 2018). Trier et al. (2018) 

performed tree species classification using deep learning with a 

combination of three selected bands from airborne hyperspectral 

images and canopy height from Airborne Laser Scanning. 

Although RGB images have been used for classification it is 

unclear if the models are robust on images acquired from 

different seasons and angles of acquisition. 

 

Following the aforementioned research, this work presents the 

use of simple RGB images from a consumer grade camera 

mounted on a UAV to gather large datasets of individual trees in 

multi-season and Convolutional Neural Networks (CNN) to 

classify different tree species at the individual tree level.  

 

 

2. METHODOLOGY 

 

In this work, we aim to classify tree species based on ultra- high 

resolution RGB images of tree canopies acquired by UAVs. We 

propose to use Convolutional Neural networks for classification 

which can learn highly descriptive features from the tree 

canopies. A convolutional neural network is a structured stack of 
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convolutional layers, spatial pooling layers and fully connected 

layers. The convolutional layers are comprised of a series of 

filters which are used to extract deeper features from the input, 

and each filter is used to calculate a feature map. The pooling 

layers are responsible for reducing the dimensionality of the 

images so as to reduce the computational load. The fully 

connected layer is used to classify the data by imparting 

probability to each class.  
For implementing the CNN in our research, a suitable 

architecture had to be chosen based on models that achieved high 

levels of accuracy on object classification tasks and also work on 

high resolution images. In tree species dataset, several complex 

features need to be learned by the network. Therefore, owing to 

the nature of the data, choosing a deeper network with more 

layers was crucial to extract high level features. Also, compared 

to shallow networks, deep network architectures are better at 

generalizing because they learn all the intermediate 

features between the input data and the high-level classification. 

We did a detailed literature review on the performance of most 

successful and relevant deep CNN architectures (Huang et al., 

2017; Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; 

Szegedy et al., 2015). We chose to experiment with Residual 

Neural Network (ResNet) (He et al., 2015) architecture since it is 

efficient and simple to develop a much deeper network (hundreds 

of layers), and has performed well on several classification 

problems (Heredia, 2017;  Šulc et al., 2016). 

 

2.1. Network Architecture 

 

The ResNet architecture is composed of stacked entities referred 

to as residual blocks. It works with identity shortcut connection 

that skips one or more layers while training using skip-

connections or residual connections. The intermediate layers can 

learn to gradually adjust their weights toward zero such that the 

residual block represents an identity function. A building block 

in residual learning is shown in Figure 1. ResNet overcomes the 

problem of vanishing and exploding gradients problem which is 

encountered by typical deep neural networks. We chose our 

model to have 50 convolutional layers i.e. ResNet50. The 

architecture of ResNet50 is shown in Table 1.  

 

 
 

Figure 1. A building block in residual learning (He et al., 2015) 

 

2.2 Structure of the proposed CNN model 

 

Due to the limited availability of labelled data for training at this 

initial phase, we speeded up the learning process by applying 

transfer learning from ResNet-50 model which was pre-trained 

on ImageNet database. In typical deep CNN architectures 

including ResNET50, the early layers learn and extract general 

low level features and the last layers learn task specific features. 

Therefore, in our work, the first half of the ResNet-50 model was 

frozen so that the weights of the convolution filters are not 

modified and is used to generate low level features. We unfroze 

the second half of the model so as to allow the weights to modify 

during training so that the prior extractor weights could be fine-

tuned for our data. We replaced the average pooling layer at the 

end of the original ResNet architecture by a max-pooling layer 

because in respect to the nature of our data, average pooling can 

sometimes over- smoothens the image and fail to extract 

important features. We then added four extra fully- connected 

layers at the end of the network. This allowed us to fine tune the 

higher order feature representations along with our final classifier 

so as to make them more appropriate for our data. The structure 

of the proposed model is shown in Figure 2.  

 

 
 

Table 1. The architecture of ResNet50 model (He et al., 2015) 

 

 

 
Figure 2. Structure of the proposed CNN model 

 

 

3. EXPERIMENTS  

 

3.1 Test site and data collection  

 

For our experiments, the selected field test site is part of the 

Petawawa Reserved Forest (Ontario, Canada) which is 

dominated by pine species (White Pine and Red Pine) intermixed 

with Balsam Fir, White Spruce, Maple, Birch and Beech. The test 

area was about 10.5 ha. In this work, we used UAV RGB images 

acquired through three years (2015, 2016 and 2018). The UAV 

platform flown in 2018 flight campaign and the RGB camera 

mounted are shown in Figure 3 and 4 respectively. The images 

were collected with the leaf on (summer in 2016 and 2018) and 

off (fall in 2015) conditions to capture varying seasonal 

conditions, foliage density and the greenness, as well as in 
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different times of the day to bring in illumination variability. The 

UAV flying height in all campaign was about 150 m above 

ground and camera looking nadir. Every year, approximately 

1600 images were collected.  

 

 
 

Figure 3. UAV platform flown in 2018 flight campaign 

 

 
  

Figure 4. RGB camera mounted on UAV in 2018 flight 

campaign 

 

3.2 Preparation of Training data 

 

From the UAV acquired RGB images, the training data was 

prepared following a workflow shown in Figure 5.  

 

The RGB images from every year were processed using the 

Agisoft Photoscan v1.4.3 (Agisoft, 2017) photogrammetric 

software generating a digital surface model (DSM) and an 

orthomosaic image. The spatial resolution of the orthomosaic 

images produced from data in 2018, 2016 and 2015 were 2cm, 4 

cm and 1 cm respectively. The orthomosaic image from year 

2018 is shown in Figure 6.  

 

To perform tree crown delineation, an iterative local maxima 

filtering of varying moving window size based on the tree size 

measured in the field was used on a Gaussian smoothed DSM 

reconstructed from RGB images for identifying probable tree 

tops. Using these as markers, a marker controlled watershed 

segmentation (Vepakomma et al., 2018) was then performed on 

the complement of the DSM for segmenting the crowns. The tree 

crown segmented polygons for a part of the data is shown in 

Figure 7.  

 

Following the delineation, the tree species of each individual tree 

crown was identified and labelled. The labels were reviewed and 

approved by a forestry specialist. The labelled tree crowns were 

extracted as individual tree images and were used to train the 

CNN. Few examples of the individual tree crown images used for 

training are shown in Figure 8. Since the orthomosaic images 

from three years were georectified, we could overlay all three 

orthomosaic images and the delineation polygons. In this way, 

we were able to obtain three different images of the same tree. 

Thus, by spatializing and labelling trees in one orthoimage, we 

could generate a good amount of training images from three years 

varying in several acquisition parameters such as season, time, 

illumination and angle. In few places, we encountered minor 

errors in georectification. In such cases, we manually adjusted the 

position of the delineation polygons to enclose the correct tree 

crown. In dense parts of the forest, extreme care was taken to 

ensure each tree crown was extracted with correct labels. 

 

 

 
 

Figure 5. Workflow for preparation of training data 

 

 
Figure 6. Orthomosaic produced from RGB images in 2018 

(630m X 300m) 
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Figure 7. Tree crown delineation  

 

 

 

 
 

Figure 8. Examples of training images  

 

3.3 Training procedure 

 

Initially, we apply our approach with limited data towards the 

identification of two pine species from the rest of the trees. 

Hence, the three classes chosen were Red Pine, White pine and 

Non-Pine species. For all our experiments, we used Keras 

(Chollet and others, 2015) deep learning library running on 

TensorFlow v1.12.0 (Abadi, M et al., 2016) backend.  

 

The number of labelled images from all three years used for each 

class is shown in Table 2. We made certain that the dataset was 

unbiased. We also implemented image augmentation to cater to 

a range of physical conditions in which an image can be captured 

during data acquisition and to increase the number of training 

images. Some of the image augmentation operations performed 

in this work were horizontal and vertical flips, rotations, height 

and width shift, zoom and brightness shift.  

 

The images were resized to 224x224 pixels relative to the 

pretrained network’s input image size. Before feeding the data 

into the network, the images were shuffled in unison with their 

corresponding labels since it is significant to randomize the input 

data in order to generalize the neural network. In this way, we 

could prevent the network from training on entire mini-batches 

of highly correlated training images. For training, we used 

learning rate of 0.0001 for a total of 100 epochs and used Adam 

as the optimization method.  

Species No. of images 

Red Pine 602 

White Pine 593 

Non-Pine 591 

Table 2. The composition of training dataset 

 

 

4. PRELIMINARY RESULTS AND ANALYSIS 

 

4.1 Test results from training on three years’ data 

 

The training loss and accuracy are plotted and shown in Figure 9. 

For prediction, we reserved a separate set of 90 images with 30 

images in each class which were not used in training. We also 

made sure that this prediction set contains images from all three 

years. The labels obtained by prediction were evaluated by 

comparing them to the actual labels. The prediction results are 

tabulated in the form of a confusion matrix shown in Table 3. 

Since our classes are balanced, the performance of predictions 

was evaluated using the accuracy measure. In addition to 

accuracy, other measures such as Precision, Recall and F1 score 

are also calculated (Table 4) since these measures ignore the 

correct classification of negative examples, they instead reflect 

the importance of retrieval of positive examples (Sokolova and 

Lapalme, 2009). Precision gives a probability of number of 

images correctly identified as positive out of total images 

identified as positive. The precision average for multi-class 

classification is given by,  

 

PM   =      
∑

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑝𝑖

𝑙

𝑖=1

𝑙
 

 

Recall gives a probability of number of images correctly 

identified as positive out of total true positives.  The recall 

average for multi-class classification is given by,  

 

RM   =      
∑

𝑡𝑝𝑖
𝑡𝑝𝑖+𝑓𝑛𝑖

𝑙

𝑖=1

𝑙
 

 

F1 score is defined as the harmonic mean of precision and recall, 

given by,  

 

𝐹1 = 2 
𝑃𝑀. 𝑅𝑀

𝑃𝑀 + 𝑅𝑀
 

 

 where PM = Macro Average of precision 

            RM = Macro Average of recall 

            Tp = True positive 

            Fp =False positive 

            Fn = False negative 

             l = Number of classes 
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Accuracy =
Correctly classified images

Total number of images
 

 

 

 
 

 
Figure 9. Plots showing training loss and accuracy 

 

 Predicted Labels  

T
ru

e 
L

a
b

el
s 

Species 
Red 

Pine 

White 

Pine 

Non-

Pine 
Total 

Red Pine 20 5 5 30 

White Pine 3 23 4 30 

Non-Pine 0 1 29 30 

 Total 23 29 38 90 

Table 3. Confusion matrix for species classification using data 

from all acquisition years 

 

Species Precision Recall 

Red Pine 0.87 0.67 

White Pine 0.79 0.77 

Non-Pine 0.76 0.97 

Macro Average 0.81 0.81 

F1 score 0.8 

Accuracy 0.8 

 

Table 4. Performance measures for Species Classification using 

data from all acquisition years 

 

The results indicate that the overall classification accuracy was 

80%. We noticed that most of the misclassified images belong to 

the data acquired in the year 2015.  

 

4.2 Test results from training on one-year data 

 

We were interested to check if the size of dataset influenced the 

training results and also how the prediction is affected if we train 

the same network on images from only one-year flight campaign. 

For this purpose, we selected orthomosaic image generated from 

data of the year 2016 since it had the least fuzziness relative to 

the other orthomosaic images. The prediction results are shown 

in Table 5 and the accuracy estimation is shown in Table 6. 

 

 Predicted Labels  

T
ru

e 
L

a
b

el
s 

Species 
Red 

Pine 

White 

Pine 

Non-

Pine 
Total 

Red Pine 10 7 13 30 

White Pine 10 17 3 30 

Non-Pine 1 10 19 30 

 Total 21 34 35 90 

Table 5. Confusion matrix for species classification using data 

from the acquisition year 2016 

 

Species Precision Recall 

Red Pine 0.48 0.33 

White Pine 0.50 0.57 

Non-Pine 0.54 0.63 

Macro Average 0.51 0.51 

F1 score 0.5 

Accuracy 0.5 

 

Table 6. Performance measures for Species Classification using 

data from the acquisition year 2016 

 

We can see that the overall classification accuracy dropped from 

80% to 51% by using the images from only one-year flight 

campaign. Therefore, using images of same trees from three 

different years has prevented the network to memorize and 

helped to generalise better. Also, by using the images from only 

one-year flight campaign, the number of images used for training 

reduced to one-third. Hence, the number of training images serve 

as a critical factor in classification accuracy. 

 

 

5. CONCLUDING REMARKS 

 

This work presents the ability of deeper CNN networks, such as 

ResNet, to classify individual trees into specific tree species from 

RGB images captured by UAV resulting in a cost effective and 

feasible approach. As a preliminary work, we performed our 

research towards the identification of two pine species from the 

rest of the trees. From the experiments on our dataset, we 

obtained an overall classification accuracy of 80%. We found that 

the classification accuracy significantly increases with increase 

in the number of training images. We also found that having a 
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temporal data of trees leads to better classification of species. As 

a part of this work, a large dataset of tree species is generated 

consisting of high resolution images of labelled tree crowns that 

can be used to conduct further studies involving deep neural 

networks in forestry. In future, we aim to experiment 

multispectral data integrated with RGB data to further classify 

the non-pine class into respective species. For this purpose, 

during the flight campaign in 2018, a separate flight was carried 

out with a Quadcopter UAV mounted with Micasense RedEdge-

M multispectral sensor. In this manner, we intend to expand the 

approach to classify six or more species encompassing both 

hardwood and softwood such as Maple, Birch, Beech, Pines, Fir 

and Spruce. Besides ResNet, we also plan to experiment with 

several other deep network architectures such as VGGNet and 

DenseNet for tree species classification.  
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