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ABSTRACT: 

 

Image segmentation, unlike most conventional approaches, assesses image pixel information in relation to image contextual 

information to extract congruent image objects. A comprehensive review of literature during the research conceptualization phase 

revealed that while a lot of work has been done into the optimization of the segmentation computational time, there was a 

conspicuous research gap in the area of computational time modelling and pre-analytical projections. 

The focus of this research was, therefore, to model the computational time requirements of segmentation as a function of variability 

in image spatial resolutions and pixel counts. The employed methodology integrated structure from motion (SFM), segmentation, 

and regression modelling into a multiphase workflow to process UAV-acquired imagery into an orthomosaic, which underwent 

segmentation at multiple resolutions. The segmentation computational time was regressed against the image pixel count and spatial 

resolution. 

The results showed that the image pixel count was the main determinant of the computational time, expressing a statistically strong 

linear relationship. However, when the regressors were tested individually, the spatial resolution showed an exponential relationship 

with computational time which, however, exhibited saturation. It can be inferred that image spatial resolution is not the key 

determinant of segmentation computational time but the pixel count of the image. 

This research recommends the adoption of statistically viable models to thoroughly assess computational time requirements for 

image segmentation and a pre-analytics estimation of the time requirements such that image quality – image processing time 

adjustments can be made before rather than after analyses have commenced. 

 

 

1. INTRODUCTION 

1.1 Background 

Computational time constraint is one of the major factors 

affecting feasibility and quality of research. The analysis of 

remotely sensed images from airborne and space-borne 

platforms provides valuable insight for mapping, environmental 

monitoring, disaster management and civil and military 

intelligence (Benz, Hofmann, Willhauck, Lingenfelder, & 

Heynen, 2004; Turner et al., 2003; Vihervaara et al., 2017). 

Remote sensing imagery has to be converted into tangible 

information which can be utilised or integrated with other data 

sets for the assessment of geographical phenomena (Blaschke, 

2010a). Originally, pixel sizes were typically coarser than, or 

similar in size to the objects of interest and emphasis was placed 

on both pixel-based and sub-pixel analysis for this conversion. 

However, recent increases in the availability of remote sensing 

datasets with higher spatial resolutions triggered a shift from 

pixel to object-based image analysis. 

  

The object-oriented approach can contribute to powerful 

automatic and semi-automatic analysis for most remote sensing 

applications (Benz et al., 2004). GEOgraphic Object-Based 

Image Analysis (GEOBIA) has been progressively gaining 

importance in the fields of remote sensing and geographic 

information science over the last decade, especially for the 

processing of very high spatial resolution imagery (Blaschke, 

2010b; Drăguţ, Csillik, Eisank, & Tiede, 2014a). Creating 

representative image objects with image segmentation 

algorithms is an important pre-requisite for classification/feature 

extraction and further integration in geographical information 

systems (GIS) analysis. However, in most cases system 

requirements. 

 

Multi-Resolution Segmentation (MRS) is probably the most 

common algorithm for these purposes (Baatz & Schäpe, 2000), 

as it has the dexterity to extract image objects existing at 

varying scales simultaneously (Baatz & Schäpe, 2000; Okojie, 

2017). Since the implementation of MRS in the eCognition® 

software (Trimble Geospatial Imaging), this algorithm has 

quickly become one of the most prominent segmentation 

algorithms within the GEOBIA domain. MRS relies on a core 

control, the scale parameter (SP), to split up an image into 

cogent image objects. The SP controls the internal (spectral) 

heterogeneity of the image objects and is therefore correlated 

with the average size of derived image objects, i.e., the higher 

the SP value, the higher the allowable internal heterogeneity 

within image objects which consequently, increases the number 

of pixels per image-object (Baatz and Schäpe, 2000, Benz et al., 

2004).   Within the field of GEOBIA, a lot of research has been 

done into the production of analytical pathways optimized for 

the best possible performance in the shortest possible time 
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(Csillik, 2017; Drönner et al., 2018; Gonçalves, Pôças, Marcos, 

Mücher, & Honrado, 2019). There is, however, still a dearth of 

information pertaining to the exact computational time 

requirements for Object-based image analysis (OBIA), 

especially image segmentation. GEOBIA can be time-

consuming especially in the extraction of information from very 

large images due to the fact that most segmentation algorithms 

make use of the pixel-grid of an image for initial object 

representation (Csillik, 2017). However, there is little or no 

readily available information on the relationship between image 

size (as influenced by spatial resolution) and segmentation 

computational time. Thus, this research sought to investigate the 

sensitivity of segmentation computational time to variation in 

image spatial resolution and pixel count. Precisely, the work 

will assess the total computational time of segmentation at 

multiple resolutions for the extraction of forest tree crowns and 

the sensitivity of segmentation computational time to variation 

in image spatial resolution and image pixel count.   

 

2. METHODOLOGY 

2.1 Flowchart 

 

Figure 1. Methodological flowchart 

 

  

2.2 Datasets and Pre-processing 

The raw image datasets used for this research were of a 

temperate forest tree stand located within Ahaus, a municipality 

in the district of Borken, North Rhine-Westphalia. The image 

datasets were captured using a type G180 fixed-wing UAV with 

a focal length of 18.3mm and the number of recorded pixels was 

4928 x 3264 captured in RGB (Red, Green & Blue). These were 

processed into an orthophoto. The software requirement 

included Pix4D mapper, ArcMap, eCognition, Microsoft Excel. 

Also, the ESP2 tool was installed within the eCognition 

environment and utilized. Datasets used within this study were 

sourced from the processing of a type G180 UAV-RGB 

imagery. The sensor on-board the UAV was a GR Lens 18.3 

with a focal length of 18.3mm and the number of recorded 

pixels was 4928 x 3264 captured in RGB (Red, Green & Blue).  

The captured imagery was processed using a photogrammetric 

workflow as detailed below; 

 Initial Processing; involves tie-point detection, 

description, and matching to give the images relative 

orientation. Due to the side and forward overlap, 

consecutive images have similar features. Tie-points refer 

to points identifying similar features in different images. 

Once the images are loaded into pix4D, the software 

identifies similar features in the images. Based on these 

similar features (points), the images are given an 

orientation relative to one another in space. With identified 

tie-points, the images are calibrated. The software then 

iteratively uses samples of the tie points to build a model 

that determines the best orientation of the images. This 

iterative process is described as Random Sample 

Consensus (RANSAC). RANSAC reduces the errors 

associated with giving the photos geolocation on the 

ground (absolute orientation) (Fischler & Bolles, 1981). 

Once the report shows sufficient image calibration, ground 

control points collected during fieldwork are loaded to 

optimize the calibration process and give the calibrated 

images geolocation on the ground (absolute orientation). 

Once the quality is appropriate, as revealed in the quality 

report, the next phase is initiated. 

 

 Point Cloud Densification; this was done to 

increase the density of the 3D points which were generated 

from the initial processing using Area-Based Matching 

(ABM) algorithms. This increases the accuracy of the 

eventually outputted digital surface model and orthomosaic 

(Pix4D, 2018). 

 

DSM and Orthomosaic generation; 

 

 DSM; The DSM was generated by triangulation 

of the dense point cloud and was outputted in GeoTIFF 

format. 

 

 Orthomosaic; the orthomosaic was generated 

from the mosaicking of the orthorectified images 

(geometrically corrected images possessing a uniform 

scale). The orthomosaic generated from this process was a 

true orthophoto as it was generated with the DSM taken 

into consideration (Rau et al., 2002). It was generated in 

multiple GeoTIFF tiles which were later merged into a 

single orthophoto (Pix4D, 2016). 

 

 Image Resampling; this was done on an 

extracted (clipped) portion of the orthomosaic to ensure 

uniformity in the area and spatial extent of images to be 

utilized for the multi-resolution segmentation analyses. It 

was conducted using Bilinear Interpolation. The image 

resolutions in centimeters were; 11, 15, 20 25, 30, 35, 40, 

45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105 and 

110, adding up to 21 spatial resolutions. 

 

2.3 Analytical Approach 

All segmentation analyses were conducted on a single 

computing system equipped with Windows 10 Home Edition 

(Operating System) and the processor specifications are Intel ® 

Core™ i5-5200U CPU@ 2.20GHz 2.19GHz, Installed Memory 

(Random Access Memory); 8GB, System Type; 64-bit 

Operating System, x64-based processor. This was kept constant 

all through the image processing and computational time 

extraction. 

 

2.31 Segmentation 

The segmentation analyses were focused primarily on the 

extraction of forest crown image object from the orthomosaic 

and its time implications. This was done using the ESP2 tool 

created by Drăguţ et al. (2010) for the automated 

parameterization of multi-scale image segmentation (Drǎguţ, 

Tiede, & Levick, 2010). This approach relies on the potential of 

the local variance (LV) to detect scale transitions in loaded 

image layers (RGB bands).  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-483-2019 | © Authors 2019. CC BY 4.0 License.

 
484



The tool functions by detecting the number of image layers 

added to a project and segmenting them iteratively utilizing a 

multiresolution segmentation algorithm with a bottom-up 

approach, wherein the scale factor in the segmentation (scale 

parameter; SP), increases with a constant lag. The mean LV 

value of objects in all of the layers is then computed and serves 

as a pre-condition for stopping the iterations i.e. when a scale 

level records an LV value equal to or lower than the previous 

value, iteration ends, and the objects segmented in the previous 

level are retained (Drăguţ, Csillik, Eisank, & Tiede, 2014).  

The ESP2 tool settings can be viewed in figure 1 below.  

i. Select map; At this step, the loaded image is selected 

as the ‘Main map’ 

 

ii. Use of hierarchy; This was set to 1 indicating that 

each scale parameter was to be generated within a top-down or 

bottom-up approach.  

 

iii. Hierarchy: This was set to 1 indicating that the 

algorithm should follow a bottom-up approach i.e. analyses 

starts from the smallest level and merges objects to obtain 

higher levels. 

 

iv. ‘Starting scale Level 1’, 'Starting scale Level 2' and 

'Starting scale Level 3'; indicates the minimum scale parameters 

at which processing starts, for the three levels which are going 

to be created. All starting scales were set to 1. 

 

v. ‘Step size Level 1’, ‘Step size Level 2’ and ‘Step size 

Level 3’; specifies the increments of scale parameter for the 

step-wise segmentation processing within the algorithm. For the 

three levels being created, the values were set at 1, 10 and 100 

respectively. 

 

vi. ‘Shape’ and ‘Compactness’; specifies the composition 

of the homogeneity criterion as implemented in the 

multiresolution segmentation. Both of these were set to 0.1 and 

0.5 respectively. 

 

vii. 'Produce LV Graph'; this specifies the production of 

text files with local variance values stored. The file can be 

visualized using the 

ESP_Estimation_Scale_Parameter_Chart.exe tool. This was set 

to 1 indicating that the text files should be produced.  

viii. ‘Number of loops’; stipulates the number of scale 

levels to be generated if ‘Produce LV Graph’ was set to 1. 

Number of scale levels was set to 100. 

 

  
  

 Figure 2. ESP2 Algorithm Description, 2019. 

 

 
 

Figure 3. Scale Parameter Estimation Chart at 11cm Resolution, 

2019. 

 

2.32 Regression Modelling 

From the review of literature, it was inferred that spatial 

resolution of images was a strong determinant of image pixel 

count. As such in order to avoid multicollinearity within the 

regression modelling, some ad hoc tests were conducted 

including Pearson’s Correlation test and Variance Inflation 

Factor (VIF) computation and assessment. 

 

Computational time costs of segmentation for all specified 

image resolutions were extracted and regressed against the 

image spatial resolutions and Image pixel counts as specified in 

the model below; 

 

Y = β0 + βiXi + e                  (i)  

 

Y = β0 + β1X1 + β2X2 + e               (ii) 

 

Where, Y = Computational Time in Seconds 

             β0 = Slope-Intercept 

             β1, 2 = Regression coefficients of Xi 

             X1 = Image Spatial Resolution 

             X2 = Image Pixel Count 

 

2.33 Model Validation 

Model validation was conducted using an F-test and T-tests. 

This was done by utilizing created models for projecting the 

image computational time of the previously segmented images 

and comparing the modelled time to the actual time used for 

computation. The F-test and T-test were used to statistically test 

for a significant difference in variances and means between the 

actual and modelled computational times. 

 

3. RESULTS 

3.1 Correlation and Collinearity 

The results of the correlation tests showed a strong inverse 

relationship existing between image spatial resolution and 

image pixel count (-0.671). This was significant at 99.9% (p = 

0.00085 < α ≤ 0.001).  However, the collinearity test showed 

there was no multicollinearity among the covariates. 
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Parameters Values 

Alpha 0.05 

Tails 2 

Corr. Coeff. -0.672 

Std. Error 0.170 

t -3.952 

p-value 0.00085 

lower -1.027 

upper -0.316 

 

Table 1. Correlation Matrix 

3.2 Segmentation Output 

Table 2 shows the computational time requirements for the 

segmentation of the UAV-RGB orthomosaics per image spatial 

resolution. From the results, it can already be inferred that the 

computational time requirements for segmentation vary directly 

with both pixel count and image spatial resolution implying that 

the coarser the spatial resolution of an image, the lower the 

pixel count and the lower the computational time required to 

segment the image. However, the variation rate and 

computational time sensitivity to the change in spatial 

resolutions and pixel counts are not inferable from this table. To 

better understand the nature of this trend, regression modelling 

was conducted and the results are presented in the regression 

output. 

 

Image Resolution 
(cm) 

Pixel Count 
(Unit) 

Computational 
Time (Seconds) 

11 3989586 822 

15 2174655 613 

20 1223480 237 

25 783144 173 

30 543979 126 

35 399486 97 

40 305870 83 

45 241380 75 

50 195640 65 

55 161385 56 

60 135837 51 

65 116100 40 

70 100111 40 

75 87165 39 

80 76258 33 

85 67768 40 

90 60264 34 

95 54362 32 

100 48910 29 

105 44341 31 

110 40565 28 

 

Table 2. GEOBIA Resolution/Time Matrix 

3.3 Regression Output 

3.3.1 Regression Model Fit and Significance: The overall 

model fit matrix shows that approximately 97.4% of the 

variation in the computational time values can be explained by 

the model. This implies that the statistical uncertainty of using 

this model to estimate the time requirement of segmentation 

before it is undertaken is approximately 2.6%. The statistical 

significance of the model was tested at an acceptance threshold 

of 95%, it, however, proved significant at a statistical 

confidence level of > 99.9% as can be inferred from the 

ANOVA table. 

  

ANOVA 

   

ANOVA  df SS MS 

Regression 2 817599.00 408799.50 

Residual 18 21464.58 1192.48 

Total 20 839063.58 

 
Alpha .05  (F) 342.82   

p-value 4.69E-15   

sig yes   

 

Table 3. Regression ANOVA Matrix 

 

Multiple R 0.987 

R Square 0.974 

Adjusted R Square 0.972 

Standard Error 34.532 

Observations 21 

 

Table 4. Overall Regression Model Fit Matrix 

3.3.2 Regression Coefficients and Significance: The 

regression analysis shows that while there exists an interactive 

inclination between image resolution, pixel count and 

computational time (see fig. 3 & 4), only the image pixel count 

directly and significantly influenced the segmentation 

computational time. There is a very high sensitivity to the image 

pixel count, as is evidenced from the regression coefficient 

which is significant at 99.9% (p< α ≤ 0.001). As such, it can be 

inferred that, barring all exogenous factors, the primary 

determinant of segmentation time is the image pixel count. 

However, as can be seen from figure 3 below, there exists a very 

strong exponential negative relationship between the image 

spatial resolution and the segmentation computational time. 

This implies that per unit increase in image spatial resolution 

(decrease in spatial resolution numerical value), a 

corresponding exponential increase in segmentation 

computational time occurs. But this relationship saturates, 

implying that at a particular point, the computational time loses 

its sensitivity to a spatial resolution change. 
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Parameters 

Intercept 

Resolution 

(cm) 

Pixel 

Count 

coefficients 23.31575 -0.04411 0.00021 

std err 25.55442 0.33684 0.00001 

t stat 0.912 -0.131 19.309 

p-value 0.374 0.897 1.77E-13 

lower -30.37 -0.75 0.00 

upper  77.00 0.66 0.00 

vif  1.82 1.82 

 

Table 5. Coefficients for Computational Time, Image Spatial 

Resolution and Image Pixel Count 

 

y = 20347x-1.445

R² = 0.9673
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Figure 4; Image Resolution Vs Computational Time Chart 

 

 
 

Figure 5; Pixel Count Vs Computational Time Chart 

 

3.4 Model Validation  

This was done as explained in the methodology. The results are 

presented in tables 5 & 6 below. The F-test served as an Ad Hoc 

test for the statistical determination of the type of t-test to be 

utilized in the actual comparison of the computed and modelled 

segmentation time cost. It did this by testing the two variables 

for equality in variance. The results showed that there was an 

unequal variance existing between the two variables (P > α = 

0.05). As such, a two-sample t-test assuming unequal variances 

was selected for the eventual test of significant difference. 

From the results, as shown in table 6 below, it can be inferred 

that there is no significant difference existing between the 

computed (actual) segmentation time cost and the modelled 

segmentation time cost (P > α = 0.05). This implies that 

modelled time values for segmentation using the created model 

will not significantly differ from the actual time values for 

segmentation of either remote sensing or proximal sensing 

imagery provided all other variables are kept constant. 

 

  Computed Modelled 

Mean 130.6069 129.1699 

Variance 41953.179 39822.83 

Observations 21 21 

df 20 20 

F 1.053 

 

P(F<=f) one-tail 0.454 

 

F Critical one-tail 2.124 

  

Table 6. F-Test Two-Sample for Equality in Variance in 

Computed and Modelled Analytical Time Cost 

 

  Computed Modelled 

Mean 130.607 129.170 

Variance 41953.179 39822.827 

Observations 21 21 

Hypothesized Mean Difference 0 

 
df 40 

 
t Stat 0.023 

 
P(T<=t) one-tail 0.491 

 
t Critical one-tail 1.684 

 
P(T<=t) two-tail 0.982 

 
t Critical two-tail 2.021 

  

Table 7. T-Test: Two-Sample Assuming Unequal Variances for 

Significant Difference in Computed and Modelled Analytical 

Time Cost 

3.5 Conclusion and Recommendation 

3.5.1 Pre-knowledge of segmentation time requirements of 

an image is information that can prove invaluable to a 

researcher as it can serve as a basis for optimization of the 

segmentation process. The total segmentation time was found to 

vary directly with image spatial resolution and the pixel count. 

This implies that an increase in computational time for 

assessment can be expected with an increase in spatial 

resolutions and pixel counts. This is of course contingent on the 

scene size of the image and the segmentation algorithm in use 

being kept constant as was done during this research. 

Also, it has been inferred that image spatial resolution is not the 

key determinant of segmentation computational time but rather 
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image spatial resolution in conjunction with the scene size of 

the image to be analyzed. This is so because these two factors in 

combination with each other, dictate the pixel count of an 

image. The computational time sensitivity to variation in pixel 

counts of images can be considered logical because the 

segmentation of images is conducted by the assessment of pixel 

and contextual information for the extraction of meaningful 

geographic objects. 

However, the importance of the image spatial resolution cannot 

be totally dismissed. Aside from the fact that it influences the 

pixel count, it exhibits an exponential relationship with 

computational time. On the basis of this, it can be inferred that 

per unit increase in spatial resolution triggers an exponential 

increase in computational time requirements of images. This, in 

turn, means that computational time can be greatly reduced by 

splitting imagery into congruent image tiles before performing 

image segmentation.  

As such it is the recommendation of this work is that before 

segmentation is conducted, the computational time should be 

modelled either the multiple linear regression (as presented in 

the result section) or using individually the single indicator 

regression (as presented in the charts) to gain foreknowledge of 

the approximate time needed for analysis as this will aid 

researchers in making proper decisions pertaining to the image 

based parameters actually required for object-based image 

analyses. It will also help in deciding on acceptable spatial 

resolution – computational time trade-offs, due to the 

foreknowledge of the computational time requirements of 

imagery to be processed. 
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