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ABSTRACT: 

 

The information on the grass quantity and quality is needed for several times in a growing season for making optimal decisions about 

the harvesting time and the fertiliser rate, especially in northern countries, where grass swards quality declines and yield increases 

rapidly in the primary growth. We studied the potential of UAV-based photogrammetry and spectral imaging in grass quality and 

quantity estimation. To study this, a trial site with large variation in the quantity and quality parameters was established by using 

different nitrogen fertilizer application rates and harvesting dates. UAV-based remote sensing datasets were captured four times 

during the primary growth season in June 2017 and agricultural reference measurements including dry biomass and quality 

parameters, such as the digestibility (D-value) were collected simultaneously.  The datasets were captured using a flying height of 50 

m which provided a GSD of 0.7 cm for the photogrammetric imagery and 5 cm for the hyperspectral imagery. A rigorous 

photogrammetric workflow was carried out for all data sets aiming to determine the image exterior orientation parameters, camera 

interior orientation parameters, 3D point clouds and orthomosaics. The quantitative radiometric calibration included sensor 

corrections, atmospheric correction, and correction for the radiometric non-uniformities caused by illumination variations, BRDF 

correction and the absolute reflectance transformation. Random forest (RF) and multilinear regression (MLR) estimators were trained 

using spectral bands, vegetation indices and 3D features, extracted from the remote sensing datasets, and insitu reference 

measurements. From the FPI hyperspectral data, the 35 spectral bands and 11 spectral indices were used. The 3D features were 

extracted from the canopy height model (CHM) generated using RGB data. The most accurate results were obtained in the second 

measurement day (15th June) which was near to the optimal harvesting time and generally RF outperformed MLR slightly. When 

assessed with the leave-one-out-estimation, the best root mean squared error (RMSE%) were 8.9% for the dry biomass using 3D 

features. The best D-value estimation using RF algorithm (RMSE% = 0.87%) was obtained using spectral features. Using the 

estimators, we then calculated grass quality and quantity maps covering the entire test site to compare different techniques and to 

evaluate the variability in the field. The results showed that the low-cost drone remote sensing gave excellent precision both for 

biomass and quality parameter estimation if accurately calibrated, offering an excellent tool for efficient and accurate management of 

silage grass production.  

 

1. INTRODUCTION 

Remote sensing using unmanned aerial vehicles (UAV) offers 

totally new prospects for applying precision agriculture (PA) 

techniques (Aasen et al. 2018). In the silage production, the 

fundamental PA tasks include the management of fertilization 

as well as the correct timing for harvesting in order to optimize 

the adequate yields with a desired quality for animal feeding 

under the prevailing weather, soil, and environmental 

conditions. In the northern countries, silage grass swards are 

harvested two to four times a season, and fertiliser is applied 

similarly once for each harvest, when aiming to achieve 

maximum yields. The feed quality (digestibility) in grass swards 

declines rapidly in the primary growth period while the yield is 

increasing, and knowledge of the nitrogen uptake is necessary to 

determine the fertilizer need for the regrowth. Thus, information 

on the grass quantity and quality is needed for several times in a 

growing season for making optimal decisions about the 

harvesting time and the fertiliser rate.  

 

Fast development of lightweight multi- and hyperspectral sensor 

technology enable flexible UAV-based collection of spectral 

data, which can be used to estimate quantity and quality 

information on plants (eg. Geipel et al., 2016; Näsi et al., 

2018a). In addition to spectra information, 3D structure of 

plants can be collected at the same time since frame-based 

sensors and modern photogrammetry enable the generation of 

spectral digital surface models (DSM) (Aasen et al., 2015; 

Oliveira et al., 2019). Especially in biomass estimation, the use 

of drone-based photogrammetric canopy height models (CHMs) 

has already showed good results (Rueda-Ayala et al., 2019; 

Bareth and Schellberg, 2018; Bendig et al., 2015; Li et al., 

2016). 

 

The objective of this study was to investigate and compare the 

efficient and low-cost UAV machine learning techniques, based 

on spectral and 3D data, for managing and monitoring silage 

grass swards. 
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2. MATERIALS AND METHODS 

2.1 Test area 

Trial sites were established in Jokioinen, located in southwest 

Finland, in the summer of 2017 and introduced by Viljanen et 

al. (2018) and Näsi et al. (2018b). The experimental sites were 

established on a second-year silage production field aiming to 

generate large variation in the study sward. The six fertilizer 

rate treatment had four replicates leading to 24 main plots (plot 

size 12 m × 3 m), and the harvesting time was in the sub-plot. 

The campaign was repeated 4 times (on the 6th, 15th, 19th, and 28th 

of June), thus, the experiment had a total of 96 plots. Samples 

were taken from each harvested plot for quantity and quality 

analyses. The dry matter yield (DMY) represented the quantity 

parameter and it was measured by the Haldrup forage plot 

harvester (Viljanen et al. 2018). Digestibility of organic matter 

in dry matter (D-value) was selected as the quality parameter. 

D-value is directly related with metabolised energy (ME) as D-

value (g/kg DM) multiplied by 0.016 provided ME as MJ/ kg 

DM and it was measured by the Valio Ltd feed laboratory, using 

a Near Infrared Spectroscopy (NIRS) technique (Aastveit and 

Marum 1989) with Foss NIR XDS equipment. The relation 

between biomass (DMY) and digestibility (D-value) can be seen 

in Fig. 1, which shows that they are negatively correlated 

(correlation coefficient = -0.85). As the quantity increases, the 

quality measured as D-value decreases. 

 

 
Figure 1: Reference measurements of dry matter yield (DMY) 

and D-value (digestible organic matter in dry matter) for each 

date. 

 

2.2 UAV campaign 

Multitemporal UAV datasets were captured four times in the 

trial site during the primary growth season. A quadcopter drone 

was equipped with a multisensory remote sensing system 

consisting of an RBG camera, a hyperspectral 2D frame camera, 

an NV08C-CSM L1 single frequency Global Navigation 

Satellite System (GNSS) receiver, and a Raspberry Pi single-

board computer. The RGB camera was a Sony A7R 36.4 

megapixels camera, with a Sony FE 35 mm f/2.8 ZA Carl Zeiss 

Sonnar T* lens. The hyperspectral camera was the 2D frame 

camera prototype FPI2012b, which is based on an adjustable 

Fabry-Pérot interferometer (FPI) acquiring spectral bands using 

a time sequence based process, i.e., the acquisition is not 

simultaneous for all bands of the same hyperspectral cube 

(Honkavaara et al. 2017; Oliveira et al., 2016). The sensor was 

set to collect 36 bands from 510-890 nm with 15-30 nm of full 

width at half maximum (FWHM). The flight heights of the 

campaigns in Jokioinen were, 50 m giving a GSD of 5 cm for 

the hyperspectral data and 0.64 cm for the RGB data. The flight 

speed was 2 m/s in all flights. Image overlaps were 84–87% in 

the forward direction and 65–81% between flight lines (see 

more details in Viljanen et al. 2018). 

 

2.3 Data processing chain 

The approach in the data processing was to generate ultra-dense 

point clouds using the RGB datasets and to calculate image 

mosaics and other spectral features using the HS data sets. 
 
The datasets were processed using the processing chain 

developed at the Finnish Geospatial Research Institute (FGI) 

(Honkavaara et al., 2013, 2017, 2018; Näsi et al., 2018; 

Nevalainen et al., 2017). The steps are the following: 

 

1. Applying laboratory calibration corrections to the images. 
2. Determination of the geometric imaging model, including 

interior and exterior orientations of the images. 
3. Using dense image matching to create a dense 

photogrammetric digital surface model (DSM). 
4. Determination of a radiometric imaging model to transform 

the digital number (DNs) data to reflectance. 
5. Calculating the radiometric output products. 
6. Extracting spectral and 3D structural features. 
7. Estimation of grass parameters. 

 

The processing was divided to the geometric (steps: 2, 3) and 

radiometric (steps 1, 4, 5) processing steps.  
 

Agisoft Photoscan Professional (version 1.3.5) was used for the 

photogrammetric processing, which involved image orientation 

estimation and DSM generation. The RGB images were 

processed separately and were used to calculate DSMs with 1 

cm GSD for each date. The three reference bands of the FPI 

images were processed in a combined processing with the RGB 

images. The band registration for the rest of the bands of the 

FPI images was carried out using the approach developed by 

Honkavaara et al. (2017). 
 

Radiometric processing of hyperspectral data sets was carried 

out using the FGI’s radBA software (Honkavaara et al., 2013), 

which consider effects of changing illumination conditions, 

bidirectional reflectance distribution function (BRDF) 

phenomena and absolute reflectance transform. 
 

2.4 Estimation process and quality assessment 

Reflectance values from 35 spectral bands (510-890 nm) were 

extracted based on the average reflectance value of each grass 

reference plot taking into account the corresponding date of 

field and UAV measurements. The reflectance FPI 

orthomosaics were used to compute 11 spectral indices, also 

used as features (Chlorophyll index green (Cl-red-edge), 

Gitelson et al. (2003); Chlorophyll index red-edge (Cl-green), 

Gitelson et al. (2003); Green Normalised Difference Vegetation 

Index (GNDVI), Gitelson et al. (1996); MERIS terrestrial 

chlorophyll index (MTCI), Dash and Curran (2004); Modified 

Chlorophyll Absorption Ratio Index (MCARI), Daughtry et al. 

(2000); Modified Triangular Vegetation Index (MTVI), 

Haboudane. et al. (2004); Normalised Difference Vegetation 

Index (NDVI), Rouse et al. (1974); Optimisation of Soil 

Adjusted Vegetation Index (OSAVI), Rondeaux et al. (1996); 

Photochemical Reflectance Index (PRI(512.531)), Hernández-

Clemente et al. (2011); Ratio Difference Vegetation Index 

(RDVI), Roujean and Breon (1995); Red edge inflection point 
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(REIP), Guyot and Baret (1988);).  Furthermore, 3D features 

based on CHMs were extracted for the plots; the features 

included average, median, minimum, maximum, standard 

deviation and percentiles (70, 80, 90) of the canopy heights. The 

CHMs were generated using only RGB 3D photogrammetric 

derived data (see Viljanen et al. 2018). Spectral, vegetation 

indices and 3D features were further extracted for the whole test 

area in order to generate quality and quantity maps using the 

models estimated from the reference data plots. 

 

Estimation and validation were done using the Random Forest 

(RF) (Breiman, 2001) and Multiple linear regression (MLR) 

implemented in the software Weka (Weka 3.8.1, University of 

Waikato). These machine learning algorithms were used to 

estimate grass sward yield quantity (above-ground biomass at 7 

cm cutting height) and quality (D-value) parameter in two 

experiments, one using only 3D features and the second using 

hyperspectral reflectance bands and indices. To assess the 

prediction accuracy during the estimation of DMY and D-value 

for grass, we used Leave-one-out (LOO) method. The 

estimation accuracy was quantified using correlation 

coefficients (PCC) and root mean square error (RMSE) and 

RMSE%. 

 

3. RESULTS 

In the DMY estimation, the use of only 3D features 

outperformed the spectral features in the middle of growing 

season (15th, 19th June) considering both RF and MLR (Table 

1-2, Figure 2). This situation was the opposite in the beginning 

of the growing season when the sward volume and density were 

low, as well as after the targeted silage harvesting date when the 

stand was already heading, and lodging occurred in the most 

heavily fertilized plots. In most of the cases, the use of RF 

algorithm lead slightly better estimation results than MLR. 

 

When estimating D-value, there were only small differences 

between 3D and spectral features sets and between the 

estimators (RF and MLR). It is worth to note that DMY and D-

value have strong correlation (Figure 1) in this material on 

primary growth, which can affect the results. 

 

 
PCC RMSE% RMSE 

 
DMY 

D-

value 
DMY 

D-

value 

DMY 

(kg DM/ha) 

D-value 

(g /kg DM) 
 

6 June       

3D 0.79 -0.55 19.41 1.96 215.98 14.81 

Spectral 0.94 -0.02 11.02 1.75 122.65 13.16 

15 June 
      

3D 0.96 0.83 8.9 0.95 201.05 7 

Spectral 0.92 0.85 12.48 0.87 281.77 6.36 

19 June 
      

3D 0.97 0.56 9.02 2.22 262.22 15.39 

Spectral 0.96 0.51 11.26 2.21 327.24 15.34 

28 June 
      

3D 0.93 0.78 13.03 1.7 564.51 11.22 

Spectral 0.95 0.75 12.25 1.79 530.94 11.84 

Table 1: Pearson correlation coefficient (PCC), the root mean 

square errors (RMSE) and the normalized RMSE (RMSE%) of 

dry matter yield (DMY) and digestibility (D-value) using 

Random Forest (RF) algorithm. 

 

 

 
PCC RMSE% RMSE 

 
DMY 

D-

value 
DMY 

D-

value 

DMY 

(kg DM/ha) 

D-value 

(g /kg DM) 
 

6 June       

3D 0.74 -0.46 21.53 1.75 239.67 13.17 

Spectral 0.95 0.18 9.90 1.56 110.15 11.73 

15 June 
      

3D 0.95 0.86 10.43 0.86 235.42 6.34 

Spectral 0.90 0.85 14.69 0.90 331.80 6.63 

19 June 
      

3D 0.97 0.65 10.19 1.92 296.08 13.33 

Spectral 0.95 0.39 13.02 2.39 378.48 16.58 

28 June 
      

3D 0.81 0.77 21.17 1.76 917.54 11.58 

Spectral 0.87 0.78 18.47 1.71 800.14 11.25 

Table 2: Pearson correlation coefficient (PCC), the root mean 

square errors (RMSE) and the normalized RMSE (RMSE%) of 

dry matter yield (DMY) and digestibility (D-value) using Multi 

Linear Regression Models (MLR) 

 
Figure 2: The normalized RMSE (RMSE%) of dry matter yield 

(DMY) (up) and digestibility (D-value) (down) 

Grass quantity (Figure 3) and quality (Figure 4) maps were 

calculated covering the entire test site. In the DMY maps, the 

red points are correspond to regions with low DMY values, 

while the green points correspond to areas with the higher 

values (Figure 3). In the quality map (figure 4), D-value is 

decreasing from high values (green) to low values (red) during 

measurement time. 

 

In most of the cases, maps based on RF and MLR were similar 

with same date but in the first measurement day, MLR selected 

only a constant value to model D-value, not any 3D feature, 

which is clearly visible in Figure 4. Furthermore, in June 19, the 

use of spectral features in MLR lead significantly lower DMY 

values than RF for the same date. This indicates that RF models 

generated in this study were more stable than MLR models. 

 

There were not notable differences between 3D and spectral 

features in the first two dates for quantity, but differences were 

visible, especially in the two latest datasets both in the biomass 

and quality maps. 
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Figure 3: Dry biomass (DMY) maps of the test area for four measurements days using RF and MLR algorithms trained with 3D and 

spectral features. 

 

 
Figure 4: Quality maps (D-value) of test area for four measurements days using random forest (RF) and MLR algorithms trained with 

3D and spectral features. 

 

4. CONCLUSIONS 
 

This study investigated and compared UAV machine learning 

techniques, based on spectral and 3D data, for managing and 

monitoring silage grass swards. 

 

The most accurate results were obtained in the second 

measurement day (15th June) which was near to the optimal 

harvesting time and generally RF outperformed MLR slightly. 

When tested with the leave-one-out-estimation, the best root 

mean squared error (RMSE%) were 8.9% for the DMY using 

3D features. The best estimation of D-value using RF algorithm 

(RMSE% = 0.87%) was obtained using spectral features. 

  

Although, the spectral features have not outperformed the 3D 

features for all dates, overall, it has presented best or near 

results compared to 3D features, which indicates that spectral 

features have more stability for the quality parameter estimation 

throughout different dates. 

 

Grass quality and quantity maps covering the entire test site 

showed clearly internal variability in the field and temporal 

changes during growing season. The results show that the low-

cost drone remote sensing yielded promising precision both for 

biomass and quality parameter estimation, offering an excellent 

tool for efficient and accurate management of silage grass 

production.  
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