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ABSTRACT: 

 

Images and LiDAR point clouds are the two major data sources used by the photogrammetry and remote sensing community. 

Although different, the synergy between these two data sources has motivated exploration of the potential for combining data in 

various applications, especially for classification and extraction of information in urban environments. Despite the efforts of the 

scientific community, integrating LiDAR data and images remains a challenging task. For this reason, the development of Unmanned 

Aerial Vehicles (UAVs) along with the integration and synchronization of positioning receivers, inertial systems and off-the-shelf 

imaging sensors has enabled the exploitation of the high-density photogrammetric point cloud (PPC) as an alternative, obviating the 

need to integrate LiDAR and optical images. This study therefore aims to compare the results of PPC classification in urban scenes 

considering radiometric-only, geometric-only and combined radiometric and geometric data applied to the Random Forest algorithm. 

For this study the following classes were considered: buildings, asphalt, trees, grass, bare soil, sidewalks and power lines, which 

encompass the most common objects in urban scenes. The classification procedure was performed considering radiometric features 

(Green band, Red band, NIR band, NDVI and Saturation) and geometric features (Height – nDSM, Linearity, Planarity, Scatter, 

Anisotropy, Omnivariance and Eigenentropy). The quantitative analyses were performed by means of the classification error matrix 

using the following metrics: overall accuracy, recall and precision. The quantitative analyses present overall accuracy of 0.80, 0.74 

and 0.98 for classification considering radiometric, geometric and both data combined, respectively. 

 

 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Urban scene complexity is one of the main factors that makes it 

difficult to discriminate objects, mainly by automatic 

classification methods. In addition, the lack of information due 

do the occurrence of occlusions and the characteristics of the 

equipment are further aspects hampering the classification 

process (Sohn & Dowman, 2007). In past decades aerial images 

and LiDAR point clouds were the two main data sources used 

in urban environment analysis, such as Land Use and Land 

Cover (LULC) mapping (Zhang & Lin, 2017; Rau et al., 2015; 

Ali-Sisto & Packalen, 2017), building modelling (Haala & 

Kada, 2010), etc.  

 

The synergy between these two main data sources has motivated 

several studies aiming at the integration of images and LiDAR 

point clouds in order to explore the complementarity of 

radiometric and geometric information (Hermosilla et al., 2011; 

Buján et al., 2012; Malpica et al., 2013). Recent advances in the 

development of Unmanned Aircraft Vehicle (UAV), positioning 

sensors and inertial sensors concomitant with the development 

of algorithms for image processing and computer vision have 

enabled the exploitation of the potential of information 

extraction from photogrammetric point clouds as an alternative 

to the integration of LiDAR data and images (Rau et al., 2015; 

and Ali-Sisto & Packalen, 2017; Nex & Remondino, 2014).  

 

Although the development of UAV has enabled major advances 

in data acquisition, the payload capacity sets limitations to the 

amount and quality of the embedded sensors (Nex & 

Remondino, 2014 and Colomina & Molina, 2014). The 

availability of radiometric information can vary as a function of 

the sensors embedded, ranging from few bands to many in the 

case of hyperspectral sensors, as can be seen in Aasen et al. 

(2015) and Näsi et al. (2018). In the case of point clouds 

resulting from the photogrammetric processing of images 

obtained by UAV, the payload limitations directly affect the 

availability of radiometric information since the sensors used 

usually allow the acquisition of a reduced number of bands. In 

addition to the radiometric data limitations, another problem is 

related to positional accuracy of the point cloud and the 

relatively high frequency of spurious points if compared to 

LiDAR data, which directly affects the quality of extracted 

objects. In these cases, exploitation of the complementarity of 

radiometric and geometric information is even more important. 

 

In this context, this study explores the PPC classification 

applying radiometric and geometric features extracted directly 

over the PPC from the RF classifier. The following classes were 

considered: buildings, asphalt, trees, grass, bare soil, sidewalks 

and power lines, which encompass the most common objects in 

urban scenes. Three experiments were carried out, one 

considering only radiometric features, one considering just 

geometric features and the third considering both radiometric 

and geometric features. Quantitative analyses were performed 
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by means of the classification error matrix using the following 

metrics: overall accuracy, recall and precision. 

  

2. METHOD 

Figure 1 presents a simplified flowchart of the proposed 

method. Although the flight to acquire the images and 

photogrammetric processing for the PPC generation were 

performed (Section 3.1), the flowchart starts from the available 

point cloud. In general, the proposed method can be divided 

into three main steps: point cloud pre-processing, feature 

extraction and Random Forest classifier training and 

application.  

 

 
Figure 1. Proposed method flowchart. 

 

2.1 Pre-processing      

In this work, the pre-processing step comprises applying 

filtering techniques to extract Digital Terrain Model (DTM), 

and then normalized Digital Surface Model (nDSM) estimation 

from the DTM and Digital Surface Model (DSM) subtraction. 

According to Li et al. (2004), a DSM may contain information 

on various elements present in a scene, including vegetation, 

buildings and other objects while DTM consists only of the 

points that are directly on the ground. The nDSM represents the 

absolute elevation of the features above terrain level.  

 

Filtering techniques are designed to detect and/or eliminate 

non-terrain points. This process can be performed directly on 

the original cloud (Pfeifer et al., 1998; Axelsson, 1999; Sithole 

& Vosselman, 2001) or considering a point cloud rasterization 

process in order to apply image processing techniques. In 

addition, the filtering algorithms can be classified in seven 

groups (Han et al. 2017): Statistically-based filtering 

techniques; Neighborhood-based filtering techniques; 

Projection-based filtering approaches; Signal-processing based 

method; Partial Differential Equations-based filtering 

technique; Hybrid filtering techniques and others. 

 

The rapidlasso LAStools toolkit was applied to carry out the 

filtering process. This toolkit was developed by Martin 

Isenburg, and is being constantly modernized. It provides 

filtering and DTM extraction tools, which use a variant of the 

"Progressive TIN Densification" filtering algorithm proposed by 

Axelsson (2000). 

 

Progressive TIN Densification (PTD) is a classic filtering 

method widely applied in both the scientific and commercial 

communities (Zhang & Lin, 2013). PTD consists of an iterative 

approach and works directly on the original point cloud. PDT is 

basically composed of two steps: initial TIN determination from 

seed points and the iterative densification of the initial TIN. In 

the first step, the set of points is subdivided into a regular grid 

of pre-established size, taking into account the size of elevated 

objects present in the scene, and then the minimum point is 

selected from each grid cell as the seed point in order to 

construct the initial TIN. In the progressive densification step, 

one point could be added to each TIN facet at each iteration if it 

meets the criteria on two parameters: the distance to the facet 

and the angles to the nodes. The PDT progressive densification 

step ends with the iteration at which no points are added to the 

TIN facets.   

 

2.2 Feature extraction 

In the context of automated classification methods, feature 

extraction is a fundamental step, especially for machine learning 

approaches (Meyer-Baese, 2014). The feature extraction step 

can be carried out in order to calculate metrics from the input 

data as well as the available features. Thus, a feature may be 

defined as a function of one or more quantifiable property (ie, 

color, shape, frequency, texture, etc). Two set of features are 

considered in this work: radiometric and geometric. 

 

The radiometric features considered consist of the red (R), 

green (G), and near-infrared (NIR) bands, captured by the 

sensor, the Normalized Difference Vegetation Index (NDVI), 

and the minimum (R, G, NIR), respectively Eq(s). 1 and 2. The 

motivation to include the feature based on the 

minimum (R, G, NIR) is relate to its capability to discriminate 

dark objects. 

 

 

 
 

(1) 

  (2) 

 

The geometric feature extraction was performed taking a local 

neighborhood into account. Considering that the neighborhood 

size has influence on the features, it is appropriate to use a 

methodology enabling selection of an “optimal neighborhood” 

(Demantké et al., 2011; Weinmann et al., 2015; Santos and 

Galo, 2018). The ‘optimal neighborhood’ may be selected using 

the entropy concept. In this work, an optimal neighborhood was 

considered for each point in the cloud within the boundaries of 

a minimum of 10 points and a maximum of 100 points in the 

neighborhood, as suggested by Weinmann et al. (2015). After 

the optimal neighborhood definition, the following geometric 

features are estimated (Weinmann et al., 2013, 2015; Blomley 

et al. 2014): Linearity (Lλ), Planarity (Pλ), Scatter (or 

Sphericity) (Sλ), Anisotropy (Aλ), Omnivariace (Oλ) and 

Eigenentropy (Eλ), as can be seen in Eq(s). 3-8 respectively. In 

addition to these, the height derived from the pre-processing 

step was also considered. 

 

 

 
(3) 

 

 
(4) 
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(7) 

 

 

(8) 

 

where λ1, λ2, and λ3, being λ1 > λ2 > λ3> 0, correspond to 

normalized eigenvalues computed from the 3D matrix. The 

matrix is determined considering the X, Y, Z coordinates of 

points inside the neighborhood.   

 

2.3 Random Forest classifier 

The radiometric and geometric features extracted were treated 

as input for the classifier to generate the classification results. 

At this point, several different classifiers could be considered. 

According to Breiman (2001), the Random Forest classifier has 

several advantages: it is robust to noise, fast processing 

compared to bagging and boosting refinement, and presents 

estimates of internal errors and the importance of each attribute 

in the classification process. 

 

The RF is an ensemble learning method that uses a combination 

of several decision trees. The technique used to build the RF is 

a combination of the Bagging, proposed by Breiman (1996), 

and Random Subspace methods. The Bagging method generates 

several new training sets of size n from the input training set of 

size N, where n < N. The Random Subspace method performs a 

subsampling in the feature space and at each node a set of m 

features is selected from the input M features, where m < M. 

Each tree in the forest consists of one root node, split nodes and 

leaf nodes. The root node is the more general node which 

contains all the input samples. In the split node a split criterion 

is defined considering one feature (φ) and a decision rule (τ) 

applied to the feature considered. After the split process all the 

points at a specific leaf node should belong to a specific class. 

 

At each split node a feature is selected taking into account the 

importance of the features to the split process (Gao, 2008). 

There are several possibilities of metrics to assess the 

importance of attributes (Friedl & Brodley, 1997). According to 

Gao (2008), the most common are entropy, information gain 

and information gain ratio. After defining the application of the 

features at each split node, the next important consideration is 

to design an appropriate division rule, through which input data 

is partitioned into increasingly homogeneous subsets. This is 

based on the principle of homogeneity of data. It is expected 

that, with the growth of the tree, the data will be subdivided into 

homogeneous subsets. The decision rule chosen in a given split 

node should therefore be the one that provides the greatest 

homogeneity in the subsets of the descendant nodes. Many 

algorithms have been developed to establish the division rule in 

the internal nodes during the growth of a decision tree. Of these 

rules, the four most common are the Gini index, entropy, the 

twoing index and probability of class (Zambon et al., 2006). 

 

The RF classifier is implemented and made available by several 

libraries, one of them in the Python machine learning library 

Scikit-Learn (Pedregosa et al., 2011) which was used in this 

work. This library allows the user to set up, among other things: 

the metrics for measuring the importance of features, the 

decision rule, and setting the depth and number of trees in the 

forest. In this work, the entropy metric was used for both feature 

selection and decision rule definition. Additionally, a depth of 

20 and 200 trees was set in the forest. The parameters for depth 

and number of trees were selected empirically after several tests. 

The depth varied from 5 to 100, whereas the number of trees 

varied from 50 to 10000.  

 

3. EXPERIMENTS AND RESULTS 

3.1 Dataset description 

The dataset corresponds to PPC generated from one aerial 

survey carried out in the Espigão district of Regente 

Feijó/Brazil, in the year 2018. The test site (Figure 2) presents 

high complexity due to densely constructed areas, being 

composed of buildings of different sizes and shapes located near 

to each other, isolated trees, clumps of vegetation and power 

lines. The highlighted regions (R1, R2 and R3) in Figure 2 were 

selected to visualize the results (Section 3.3). 

 

 
Figure 2. Test site and selected regions (R1, R2 and R3). 

 

The aerial survey was performed using a UAV Sensefly eBee 

equipped with a positioning system based on GNSS receivers 

and Micro Electro Mechanical Systems (MEMS) inertial 

systems. In addition, two dual frequency GNSS receivers were 

used to obtain 3D coordinates of Ground Control Points (GCP) 

and check points.  

 

The flight plan parameters are presented in Table 1. A Canon 

S110 NIR (Near Infra-Red) digital camera with a focal length of 

4.40 mm was used to acquire the images. This camera presents 

the sensitivity curves of the Green, Red and NIR bands, with 

central wavelengths positioned at wavelengths 550 nm, 625 nm 

and 850 nm, respectively.  

 

Parameter Set values 

Flight height 120 (m) 

Ground Sample Distance (GSD) 4.0 (cm) 

Along-track overlap 80 (%) 

Cross-track overlap 70 (%) 

Table 1. Flight parameters. 
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The photogrammetric processing was carried out using Pix4D 

Mapper Pro software, employing the Structure from Motion 

(SfM) algorithm, which consists of the measurement of 

photogrammetric points of interest, bundle block adjustment 

and dense image matching for point cloud generation. In total, 

eight (8) ground control points (GCP) and ten (10) check points 

were used in the photogrammetric processing to guarantee and 

assess the accuracy of the results. The point cloud accuracy 

analyses based on the check points reach RMSE values of 

0.10 m in planimetry and 0.12 m in altimetry.  

 

Following the Photogrammetric processing, a set of 3D 

coordinates and n radiometric information is associated with 

each point of the clouds, where n is the number of bands of the 

imaging sensor used to acquire the images. The PPC generated 

contains a total of 3820797 points and presents an average 

density of 46.24 points/m². 

 

3.2 Pre-processing and feature extraction results 

The experiments were performed over the PPC resulting from 

the processing of Section 3.1. The pre-processing step results in 

the DTM and nDSM. The rapidlasso LAStools ground filtering 

tool enables the setting of parameters related to the relief and to 

the objects present in the scene. In this work the standard 

configuration parameter “town or flats” was used considering 

that the test site presents a soft relief and is composed of small 

buildings. The DTM extraction results was used as input data 

for the nDSM estimation. 

 

After the pre-processing step, the radiometric and geometric 

features were extracted considering the input data (3D 

coordinate and R, G, NIR information). The feature extraction 

was aimed at the generation of information complementary to 

the information already presented in the PPC. Such 

complementary information constitutes alternatives which 

assists in the decision making of the classifier. The radiometric 

and geometric attributes extracted are presented in Figures 3 

and 4 respectively. 

 

Red Green NIR 

   

NDVI minimum (R, G, NIR) 

  

Figure 3. Radiometric features estimated for the generated PPC. 
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Figure 4. Geometric features estimated for the PPC. 

 

3.3 Classifier training and application 

Three experiments were carried out considering the extracted 

features in order to classify the points from the PPC into seven 

proposed classes: buildings, asphalt, trees, grass, bare soil, 

sidewalks and power lines. The first experiment was performed 

using only the radiometric features (Red band, Green band, NIR 

band, NDVI and minimum (R, G, NIR)). The second 

considered the use of only the geometric features extracted 

(Height, Linearity, Planarity, Scatter, Omnivariance, 

Anisotropy, Eigenentropy). In the last, both the radiometric and 

geometric features were used. 

 

The classifier training was carried out considering a point cloud 

sample manually acquired directly over the photogrammetric 

point cloud by means of visual interpretation using the 

CloudCompare software. Table 2 presents the sample total 

number of points per class. From this set of points 60% were 

randomly chosen to train the RF classifier and 40% were used 

to validate and generate the quantitative analysis.  

 

Class 
Number of points 

Training Validation Total 

Asphalt 5030 3354 8384 

Bare soil 5075 3383 8458 

Buildings 6162 4108 10270 

Grass 4770 3180 7950 

Side walks 3367 2244 5611 

Trees 8446 5630 14076 

Power lines 10594 7063 17657 

Total 43444 28962 72406 

Table 2. Total number of points per class, part used for the 

training and part used for the validation.  

 

The trained classifiers (RF) were applied in order to classify the 

PPC. The classification results are presented in Figure 5, for the 

three regions of the test site (highlighted in Figure 2).  
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The classification accuracy was evaluated based on the 

confusion matrix results, from which were derived the recall, 

precision and overall accuracy for each class, as expressed in 

Eq(s). 9-11. Table 3 presents the results of the classification 

accuracy evaluation for the three experiments performed. 

 

 

 
 

(9) 

 

 
 

(10) 

 

 
(11) 

 

where tp, fp, tn and fn represent the true positive, false positive, 

true negative and false negative in the confusion matrix 

respectively. 

 

 

 

 

Classes 
Geometric features 

 
Radiometric features 

 Geometric and 

Radiometric 

Recall Precision  Recall Precision  Recall Precision 

Asphalt 0.35 0.42  0.70 0.51  0.99 1.00 

Bare soil 0.70 0.55  0.90 0.90  0.94 0.93 

Buildings 0.89 0.91  0.81 0.87  0.99 1.00 

Grass 0.65 0.65  0.83 0.82  0.98 0.98 

Side walk 0.26 0.31  0.86 0.81  0.92 0.94 

Trees 0.89 0.91  0.92 0.91  1.00 1.00 

Power lines 0.91 0.88  0.68 0.81  1.00 1.00 

 Overall 

accuracy 
0.74 

 Overall 

accuracy 
0.80 

 Overall 

accuracy 
0.98 

Table 3. Classification accuracy evaluation. 

 

Selected regions Geometric features Radiometric features Geometric and radiometric 

 

 

 
 

 
   

 
   

 
Figure 5. Classification results for the three selected regions considering different features. 

 

a b c 

d 
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g 
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4. DISCUSSION OF RESULTS 

Many features can be considered to assist with urban 

classification tasks. Some of these were selected and their 

influence on enabling the classifier to differentiate between 

objects present in a scene was tested. A visual analysis of the 

features extracted reveals that the radiometric features Red and 

Green and the minimum (R, G, NIR) are very similar, and some 

classes are confused with each other, such as grass and trees, 

sidewalks and bare soil. However, these features provide the 

differentiation between the asphalt class and other classes. NIR 

and especially NDVI features contribute to differentiating 

vegetation classes (trees and grass) from other classes. By 

taking account of height, a geometric feature, the differentiation 

between object classes (buildings, trees and power lines) and 

ground classes (grass, asphalt, side walk and bare soil) can be 

noted. In addition, it is possible to observe in Figure 4 that all 

the features, beside the height feature, present high local 

variability (roughness) that can be related to both, the PPC 

generation and the geometric feature extraction, that is affected 

by the neighborhood.  

 

From a visual analysis of the classification results presented in 

Figure 6 it can be seen that the classification considering only 

geometric features (Figure 6 a, d and g) presents the worst 

result. This classification was capable of differentiating the 

object into two more general classes, ground (bare soil, grass, 

sidewalks and asphalt) and elevated objects (trees, buildings 

and power lines), but with a high degree of confusion among 

between them. The high confusion among these elements is 

directly related to the high local variability of the geometric 

features. The classification considering only the radiometric 

features (Figure 6 b, e and h) presents better results than the 

results from geometric classification, but some confusion still 

persists, especially in spectrally similar classes such as trees, 

grass and buildings, asphalt and power lines. However, the 

results presented by the classification considering both 

radiometric and geometric features (Figure 6 c, f, and i) gave 

the best results and were capable of differentiating between all 

the predicted classes. 

 

The quantitative analysis attested the visual analysis discussion. 

The classification that considered only geometric features 

yielded the worst values with an overall accuracy of 0.74. The 

recall and precision values for the asphalt and sidewalk classes 

was less than 0.40, which indicates serious failure to classify 

these types of object. The values of precision and recall for the 

bare soil and grass classes ranged from 0.50 to 0.70, a fact that 

indicates the classification is not satisfactory. The values for 

classes that consider objects above ground, such as trees, 

buildings and power lines, showed values above 0.9, indicating 

the capability of these features in the differentiation of the 

elevated objects. The classification considering radiometric 

features presented results better than the classification 

considering geometric features, with an overall accuracy of 

0.80. The recall and accuracy values for the classes considered 

were above 0.80, excluding the asphalt and power line classes. 

The confusion between asphalt and power lines can be seen in 

Figure 6b. The classification considering both radiometric and 

geometric features gave the best results with an overall accuracy 

of 0.98. The recall and precision values for the classes 

considered were over than 0.92. 

 

5. CONCLUSIONS 

This paper was motivated by the recent development of 

platforms such as UAV, positioning and inertial sensors and 

photogrammetric software enabling the generation of high 

dense photogrammetric point cloud. In this context, this work 

aimed to explore the potential of radiometric and geometric 

features extracted directly over PPC considering the Random 

Forest classifier. This work explores the potential of radiometric 

and geometric features, isolated and combined, in classification 

tasks without the need to integrate two different data sources. 

 

Although the visual analysis of the extracted features pointed 

out the high local variability of geometric features, which 

implies the potential of these attributes to assist the classifier, 

the application of these features into machine learning 

algorithms enables deeper analysis and urban scene 

classification. Visual and quantitative analysis indicates the 

potential of radiometric and geometric features extracted 

directly over PPC for classification tasks, presenting satisfactory 

results for urban areas with a high level of complexity. In 

addition, the classification limitations encountered when 

considering only radiometry or just geometry features were 

overcome by applying the two feature sets together. The 

combined use of radiometric and geometric features presented 

significant improvements when compared to the use only of 

geometric or radiometric features. As future work, the 

evaluation of correlations between features, consideration of 

different parameters in the classifier algorithm and inclusion of 

a refinement step in the method aiming to reclassify isolated 

points based in their neighborhood, is suggested.  
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