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ABSTRACT:

Unmanned aerial vehicles (UAVs) rely on global navigation satellite systems (GNSS) like the Global Positioning System (GPS) for

navigation but GNSS signals can be easily jammed. Therefore, we propose a visual localization method that uses a camera and data

from Open Street Maps in order to replace GNSS. First, the aerial imagery from the onboard camera is translated into a map-like

representation. Then we match it with a reference map to infer the vehicle’s position. An experiment over a typical sized mission

area shows localization accuracy close to commercial GPS. Compared to previous methods ours is applicable to a broader range

of scenarios. It can incorporate multiple types of landmarks like roads and buildings and it outputs absolute positions with higher

frequency and confidence and can be used at altitudes typical for commercial UAVs. Our results show that the proposed method

can serve as a backup to GNSS systems where suitable landmarks are available.

1. INTRODUCTION

Typical UAVs today are reliant on a combination of GPS

and inertial navigation system (INS) for accurate position

estimation. GPS and INS work complementary. INS are prone

to drift but provide frequent state updates which are less noisy.

GPS gives an absolute position value, which in contrast can be

very noisy. Combined through an algorithm like the Kalman

filter they provide a drift-free and precise position estimation.

INS alone, especially those that are part of light-weight,

commercial drones, can only maintain an accurate position for

a short time. If the GPS signal is lost, which can happen

due to malicious attacks like jamming or unavailability of the

signal (canyons, mountains, high buildings, electromagnetic

interferences, weather) this can lead to a loss of the

vehicle (Carroll, 2003).

Visual Odometry has been shown to alleviate the problem of

short term GPS outages and can maintain a precise position

estimation over a few hundred meters flight path (Sa et al.,

2018) but is, similar to INS, also prone to drift over time.

In the past methods have been proposed that solely rely on

a monocular video camera and are intended as backup or

replacement of GPS (Conte and Doherty, 2009, Cesetti et al.,

2011, Shan et al., 2015, Grönwall et al., 2017). Images taken

from the onboard camera are matched with georeferenced aerial

imagery providing absolute global positions.

These methods have different shortcomings. They fail on a

regular basis when the reference material is not representative

of the actual situation while flying or can be used only at very

high altitudes. But most importantly, they have a low rate of

good matches.

Their localization performance is somewhat hidden. In the

experiments, they are evaluated as a component of a larger

navigation system usually combined with visual odometry,

which delivers high-frequency state updates. They only serve

to reduce drift in case they are able to find a good match. But it

is unclear how these components would perform on their own.

Figure 1. Method Overview: First, an aerial image is

collected, then it is segmented into a map-like

representation, finally it is matched within a reference

map for localization of the vehicle.

An exception is the work by Mannberg and Savvaris. The

authors investigate the standalone performance of an absolute

localization component (Mannberg and Savvaris, 2014). It

achieves a high matching rate but only considers buildings as

landmarks to match. This performs well over cities. However,

in some situations it might be useful to utilize other types of

landmarks like roads, forests or rivers.

The aim of this paper is to present a method that is robust

to temporal changes in the reference material, delivers a high

matching rate and is able to incorporate multiple types of

landmarks.

Inspired by recent improvements in satellite and aerial image

segmentation (Demir et al., 2018) we extend the template

matching approaches mentioned above by segmenting the

onboard imagery into map-like representations and then

matching them to a reference map. We use two types of

landmarks, buildings and roads, to present the possibility of

using multiple landmarks.

Our experiments show that the proposed method can obtain

accurate absolute positions with a high matching rate. We

evaluate our method on real flight data and abstain from

combining it with relative localization methods like visual

odometry because we want to examine its standalone absolute

localization performance.
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2. RELATED WORK

One of the first attempts to retrieve a global absolute position

from UAV onboard imagery was proposed by Conte and

Doherty. They combine their visual odometry with an

algorithm which registers the onboard video to a geo-referenced

satellite image to reduce drift (Conte and Doherty, 2009). The

matching approach is based on normalized correlation of image

intensities. They report reasonable results for their whole

localization pipeline, but this is mostly due to the performance

of the visual odometry. The image registration module outputs

only very sparse absolute positions because most matches are

discarded due to high uncertainty. In their experiment, only

two successful matches could be made.

In contrast Cesetti et al. use pattern matching to georeference

the onboard imagery using SIFT features (Cesetti et al., 2011).

It requires the air vehicle to fly at very high altitudes in order

to extract meaningful features from natural landmarks in the

onboard imagery. The images used in their experiment have a

ground footprint of at least one square kilometer. This restricts

its use only to certain scenarios.

Grönwall et al. extend (Conte and Doherty, 2009) by adding

lidar measurements for visual odometry (Grönwall et al., 2017).

However, the basic problem of low matches is still present. On

the other hand (Shan et al., 2015) translate the onboard images

and the reference map into HOG space (Histogram of oriented

Gradients). The authors report a high matching rate in a small

scale scenario. But HOG features have been shown to be too

lossy for many challenging object detection tasks (Vondrick

et al., 2013) and can be easily outperformed by deep neural

networks.

Lindsten et al. segment the imagery into different classes

like streets, buildings, grassland, rivers, etc. using superpixels

and then compare the histogram of classes to a reference

map (Lindsten et al., 2010). However, by using a histogram

spatial information is lost and the resulting position estimates

can be very ambiguous in areas with similar class distributions.

Mannberg and Savvaris are using object detectors to identify the

position of buildings in aerial imagery and reduce the detections

to a representation where each building is represented by a point

on a map (Mannberg and Savvaris, 2014). A fingerprint that

considers the geometric allocation of the points is calculated

and matched against a reference database. The authors claim

that their framework could be used with other landmark types,

not only buildings. But it is unclear how landmarks that cannot

be reduced to points like rivers or roads would be incorporated.

We use the same template matching technique like Conte and

Doherty. But by segmenting the onboard imagery we transform

them into a more robust representation which achieves higher

matching rates. The segmentation process is similar to Lindsten

et al. but we fit our images into a reference map instead of using

a histogram, hence maintaining their spatial arrangement. Our

method works well at typical altitudes of commercial drones

and we are able to incorporate multiple types of landmarks.

3. METHOD

Our localization framework consists of three steps. First, an

image is collected by the onboard camera. Then the image is

translated into a map like representation. Finally, it is matched

within a reference map of the mission area (see Figure 1).

Figure 2. Aerial footage that is used for training and

evaluating the image segmenter

The images are taken by a downward looking camera.

This can be achieved by a gimbal that automatically levels

the camera. We transform the images into a class map

representation with the help of an image segmenter based on

a conditional generative adversarial network (cGAN). In this

paper, we consider three types of classes, buildings, roads, and

background.

cGANs have been shown to perform very well for various

image segmentation tasks (Luc et al., 2016). cGANs consist of

a generator and a discriminator network. Conventional CNNs

try to minimize a predefined loss function like the per-pixel

mean squared error. But this disregards global consistency.

On the other hand, the discriminator of a cGAN learns a loss

that tries to distinguish if a generated image is fake or real.

It considers not only pixel-wise correctness but if output is

consistent as a whole (Isola et al., 2017), which is useful in

our image segmentation setting.

In the next step, the segmented image is fit into a map of

the mission area. It is assumend that the scale and rotation

of the image are known. These parameters are provided by

the compass and altimeter of the vehicle’s inertial navigation

system. The images are then scaled and aligned to conform to

the reference map’s ground resolution and orientation.

We use as suggested by Conte (Conte and Doherty, 2009) a

template correlation method. We slide the segmented image

over the map and at each position we calculate the sum of

normalized squared difference between all pixel intensities.

The position with the lowest difference is a match and the center

position of the match corresponds to the estimated position of

the vehicle.

There are a few assumptions made in our method. We assume a

flat earth model. This is reasonable for high altitudes and most

landscapes but could be problematic in specific situation (e.g.

skyscrapers or mountains at low altitudes). We also assume that

the intitial position of the vehicle is known so it can be equipped

with a suitable reference map.
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4. TRAINING IMAGE SEGMENTER

We train an image segmenter using a large collection of publicly

available aerial images and Open Street Map data before

being able to apply the trained network within our localization

framework on our own dataset of aerial images.

The image segmenter is trained with images from the city of

Bonn and its surrounding area (see Figure 2). The training and

the evaluation set consist of images from 125km2 and 9km2

respectively. The area is split into tiles of 512x512 pixels with

a ground resolution of 0.2m per pixel. We use RGB channels

only. For more details on the training procedure and network

architecture please refer to (Isola et al., 2017).

Labels were created with data from Open Street Maps which

provides annotations of building footprints and roads amongst

other landmarks. For roads only the centerline is available. The

road width is estimated through context information provided

by Open Street Maps like the rank of the road (highway, major

road, residential street, etc.).

We train the network for 100 epochs and achieve an Intersection

over Union (IoU) of 69% for building footprints and 58% for

roads on the evaluation set. The Intersection over Union metric,

also known as Jaccard Index, quantifies the percent overlap

between the ground truth labels and the prediction output.

The relatively low accuracy can be interpreted in the following

way: As can be seen from Figure 3 building footprints are

sometimes very coarse. This might lead the image segmenter

to pick up features from the buildings’ surroundings like

pavements or lawns and consequently misclassify fields of grass

or streets as buildings. Same is true for roads since we just

estimate the width of the road while creating the labels. This

issue was partially compensated by using a very large training

set to compensate for noisy labels.

Also sometimes buildings are present in the aerial images

but a corresponding label from Open Street Maps is missing.

Therefore the network might predict objects correctly that are

not contained in the ground truth, e.g. newly constructed

buildings, garages, garden sheds. This means that the accuracy

number stated above might underestimate the quality of the

predictions to some degree.

We show an exemplary input and prediction pair in Figure 4.

We can clearly see that the image is segmented into a reasonable

representation of the roads and buildings. A small part of the

road is missing in the lower part of the image. However, the

next section will show that these segmentation masks are good

enough for good localization results as long as there are enough

features to match.

5. EXPERIMENTS

The localization experiment is conducted on an entirely

separate dataset from the one that was used during training.

Instead of using publicly available aerial images we collected

our own data with a plane that was flying over a small stretch of

land south of Bonn. Besides the spatial separation, it was taken

with a different camera at a different time of the year.

We can therefore show that our method is generalizable to

different mission areas and across different cameras. It is also

Figure 3. Building footprints obtained through Open

Street Maps are sometimes misaligned or missing. The

highlighted footprint on the left for example overlaps with

some pavement and lawn. The one on the right is too

narrow.

Figure 4. On the left aerial image that serves as input to

the image segmenter. On the right segmented image.

Building footprints in brown and roads in yellow.

robust to seasonal and temporal changes. However, we do not

test for extreme changes in appearance, i.e. landscapes covered

in snow or day and night change. The image segmenter would

need to be trained specifically for such challenges.

The dataset covers an area that is 560m long and 680m

wide. This area was covered by the plane multiple times

in a checkerboards manner (see Figure 5). It consists of

4121 overlapping images depicting a rural area with industrial

buildings in the center, a small village at the top, a forest to the

east and farmland to the south and west. Some parts of the area

do not contain buildings or roads to match.

The plane was flying at an altitude of approximately 300m

above ground. It was equipped with a downward looking

camera taking RGB images at 10Hz. The high altitude

compared to a typical civil drone flight is offset by the camera’s

narrow field of view of 39.1◦. The images cover a footprint

of approximately 216m x 144m on the ground at a ground

resolution of less than 0.1m per pixel. It was also equipped

with an inertial navigation system and a GPS receiver with Real

Time Kinematics (RTK) capabilities providing very accurate

positioning information for the ground truth to which our

method is compared.
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Figure 5. GPS tracks belonging to the whole dataset of

4121 images.

We analyze the localization performance on a subset of the data

first. This allows us to plot the localization results in a clear

and uncluttered manner and visually assess the quality of our

method. Afterward, we report the results for the whole dataset.

The data points for the subset were chosen such that they create

a continuous, hypothetical flight path and each footprint would

always contain features to match. Therefore areas without any

buildings or roads like grass fields and farmland were omitted

while creating the flight path. The flight path is 1.61km long,

consists of 471 images and is plotted in Figure 7 among the

predicted flight path.

It can be seen that for the most part the predicted path follows

the ground truth. Only a few points to the left side of Figure 7

are clearly mislocated. We measure the localization error as the

euclidian distance between the ground truth and the prediction.

The median error for this flight path is 22.7m. 19% of the

predictions have an error less than 10m and only 9% have

an error above 50m. In comparison, consumer grade GNSS

receivers achieve an accuracy that ranges from about 5 to

10m (Tiberius, 2004) under ideal conditions. Of course, it has

to be taken into account that we chose the flight path to omit

areas without suitable landmarks.

The results for the whole dataset (see Figure 6) are more

differentiated since it also contains images without buildings

or roads. The matching rate, in this case, is lower. 20.5% of the

images could not be matched. And the median error is around

40m.

Figure 8 depicts a heatmap that demonstrates where our

method performs well and where it fails. Not surprisingly, areas

with a lot of buildings and streets exhibit a higher potential

for good localization results than the forest to the east or the

farmland to the south and west.

6. CONCLUSION

We have shown that matching aerial images that were

translated into a map-like representation can be used for

global localization. We achieved a high matching rate with a

Figure 6. The cumulative error distribution for the whole

dataset. Images that could not be matched due to missing

landmarks are described as n/a and plotted separately in

red.

standalone method for absolute localization. Experiments on

real flight data exhibited that a localization error that is close to

that of consumer-grade GNSS systems is possible.

The results could further be improved by incoporating

additional knowledge. For example a motion model could

rule out implausible movements and visual odometry could

provide state updates in situations where suitable landmarks for

absolute localization are not available.

Also, future directions of research will examine how natural

landmarks could be used to increase the capabilities over

unstructured areas without roads and buildings.
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Figure 8. This heatmap visualizes the localization quality over the whole dataset. Green areas correspond to low

localization errors, red areas correspond to high localization errors.
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