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ABSTRACT:

The comparison of current image data with existing 3D model data of a scene provides an efficient method to keep models up to date. In
order to transfer information between 2D and 3D data, a preliminary co-registration is necessary. In this paper, we present a concept to
automatically co-register aerial imagery and untextured 3D model data. To refine a given initial camera pose, our algorithm computes
dense correspondence fields using SIFT flow between gradient representations of the model and camera image, from which 2D-3D
correspondences are obtained. These correspondences are then used in an iterative optimization scheme to refine the initial camera
pose by minimizing the reprojection error. Since it is assumed that the model does not contain texture information, our algorithm
is built up on an existing method based on Average Shading Gradients (ASG) to generate gradient images based on raw geometry
information only. We apply our algorithm for the co-registering of aerial photographs to an untextured, noisy mesh model. We
have investigated different magnitudes of input error and show that the proposed approach can reduce the final reprojection error to
a minimum of 1.27±0.54 pixels, which is less than 10 % of its initial value. Furthermore, our evaluation shows that our approach
outperforms the accuracy of a standard Iterative Closest Point (ICP) implementation.

1. INTRODUCTION

Due to technological advancements in the field of sensor technol-
ogy and algorithm development for the acquisition, generation
and processing of 3D data, the availability and use of 3D mod-
els has risen significantly. The advantages of 3D visualization
are applied successfully in applications such as urban navigation
and planning, ecological development or security surveillance.
City administrations, for example, already maintain city models
which are used advantageously in spatial and urban planning. A
prerequisite for a reasonable use is that these models match real-
ity as closely as possible. However, the acquisition and provision
of large-scale 3D models with a high level of detail is still very
expensive and time-consuming. Consequently, such models are
typically only generated every few years. In order to compen-
sate for the time gap between the acquisition and dissemination
of publicly accessible 3D models, we work on augmenting the
model data with up-to-date aerial imagery and perform a change
detection to update the existing model.

In order to enable the transfer of information between aerial im-
agery and a 3D model, a preliminary co-registration is neces-
sary. This task can be formulated as the estimation of camera
parameters which describe the relative position and orientation
between image and model as illustrated in Figure 1. Given point
correspondences between image and model, this is a well-known
task for which numerous efficient methods have already been de-
veloped (for instance proposed by Lepetit et al. (2009), Penate-
Sanchez et al. (2013) or Gao et al. (2003)). If there is no informa-
tion available regarding corresponding points, the main challenge
is to identify discriminative points which can be used to estimate

P = K[R t]

C

Figure 1. Registration task: Estimation of camera parameters,
which describe the relative pose between image and model.

the correspondences between the model and the image. If the
model data is textured, these correspondences can be identified
by exploiting image features (e.g. SIFT, SURF or ORB). How-
ever, texture of the model cannot always be relied on, as it might
be outdated, of different modality, or simply missing. For this
reason, we present a concept to automatically co-register aerial
imagery and untextured 2.5D or 3D models, which is working
with raw geometry information only.

Our algorithm is based on the concept for automatic registration
of images to untextured geometry, which has been proposed by
Plötz and Roth (2017). Assuming an initial camera pose, a given
untextured 2.5D or 3D model and a camera image, our algorithm
estimates the intrinsic and extrinsic camera parameters based on
2D-3D correspondences between pixels in the input image and
object points in the model. In order to detect reliable correspon-
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dences, image features of the input image are compared with
features extracted on rendered views of the 3D model. A basic
component of many proven feature descriptors consists of inten-
sity gradients, which we also use in our algorithm to describe
and compare image features. Since we deal with an untextured
model, the calculation of texture gradients on rendered images
generated from the model is not possible. To this end, we rely
only on gradients of shadings by applying the so-called Average
Shading Gradients (ASG) proposed by Plötz and Roth (2017).
This is a rendering technique in which observable shading gradi-
ents are averaged over all possible lighting directions of the 3D
scene under the assumption of a local illumination model.

This paper is organized as follows. After presenting related work
that focuses on image-to-model co-registration, we describe our
algorithm in Section 3. There, we explain the generation of gra-
dient images as well as the correspondence search and pose es-
timation. In Section 4, we present and discuss our dataset and
the results we achieved with our approach. Finally, we provide
concluding remarks and suggestions for future work in Section 5.

2. RELATED WORK

Using 2D-3D correspondences to estimate the relative camera
pose of a single query image with respect to a given 3D model
is a widely applied approach. Similar to the concept of this pa-
per, Russell et al. (2011), Aubry et al. (2014), Irschara et al.
(2009) and Sibbing et al. (2013) determine the necessary corre-
spondences by comparing the query image to rendered views of
the model. The approach of Irschara et al. (2009) is based on
a mapping of SIFT features extracted from the query image to
SIFT features extracted from images of a database. The database
used consists of already registered images as well as images of
the 3D model, which were generated from different viewpoints.
In a similar manner, Russell et al. (2011) and Aubry et al. (2014)
present approaches that generate images from a model to register
paintings. Russell et al. (2011) combine the approach of Irschara
et al. (2009) with a matching of GIST descriptors (Oliva and Tor-
ralba, 2001) to find a rough camera pose. The co-registration is
then improved by matching the contours in the painting to the
view-dependent contours of the model. Aubry et al. (2014), on
the other hand, use rendered images from a model to identify
features that are reliably recognizable in any 2D representation
and are used for matching. The features used in the approaches
mentioned are based on texture information contained in the 3D
model. In contrast, this paper assumes an untextured model. In
addition, Russell et al. (2011) and Aubry et al. (2014) assume
that the camera is located near the ground, while in this work we
focus on the co-registration of aerial imagery.

Likewise, the task of co-registering aerial photographs to a 3D
model is addressed by Vasile et al. (2006), Frueh et al. (2004) and
Mastin et al. (2009). In (Frueh et al., 2004), the goal is to trans-
fer texture information from aerial photographs to a city model.
The required registration of the images is based on an assignment
of projected 3D lines of the model to 2D lines, which are ex-
tracted in the aerial photograph. Using a given camera pose with
an accuracy comparable to that of a Global Positioning System
(GPS) and Inertial Navigation System (INS) system, an exhaus-
tive search is performed using extrinsic and intrinsic camera pa-
rameters. Vasile et al. (2006) present a similar approach. Pseudo-
intensity images are generated using shadows of light detection
and ranging (LiDAR) data which are compared to the 2D aerial
image by correlation. Similar to (Frueh et al., 2004), the complete

camera pose is then determined by an exhaustive search with GPS
information providing an initial estimate. Both methods lead to
accurate registrations, but are very time-consuming. The goal to
transfer information from images to a model is also pursued by
Mastin et al. (2009). In their approach, aerial images are reg-
istered with respect to a LiDAR point cloud in order to gener-
ate a photorealistic 3D model. The registration process based
on Mutual Information determines camera parameters that maxi-
mize the transinformation between the distribution of image fea-
tures and projected LiDAR features. Used LiDAR features arise
from elevations and probability of detection, whereas image fea-
tures result from illumination intensities. The camera parameters
that maximize the transinformation are determined using simplex
methods. The use of OpenGL and graphics hardware in the opti-
mization process leads to significantly shorter registration times
compared to the methods of Frueh et al. (2004) and Vasile et al.
(2006). The three methods co-register aerial photographs with
respect to a LiDAR point cloud. In contrast, the aim of our work
is to register an aerial photograph to a meshed 3D model, inde-
pendent from the image sensor technology used to generate the
model.

Lately, learning-based approaches are in particular attracting a
great deal of attention. Solutions based on convolutional neural
networks (CNNs), proposed by Brachmann and Rother (2018),
Kendall et al. (2015) and Hou et al. (2018), are presented to solve
the task of 2D/3D co-registration. In order to determine the cam-
era pose in a given 3D environment using an RGB image, Brach-
mann and Rother (2018) propose a CNN that predicts 2D-3D cor-
respondences. Hypotheses regarding the camera parameters are
determined from four correspondences each. A second CNN is
used to determine the most probable camera pose. Kendall et al.
(2015) describe the training of a CNN that directly estimates ex-
trinsic camera parameters based on an image. The required train-
ing data are generated by a Structure-from-Motion (SfM) pro-
cess and used for the fine tuning of pre-trained models. Hou et
al. (2018) also estimate the pose directly via a CNN, proposing
a new loss function based on Riemann’s geometry. In contrast
to learning-based approaches, this paper presents a method that
does not require complex training procedures or a large amount
of training data. Updating and adapting the method to other con-
ditions, such as prior knowledge of the camera pose, is easily
possible without having to train new models.

3. METHODOLOGY

The overall procedure to estimate the relative camera pose be-
tween an untextured model and a camera image (referred to as
query image) is depicted in Figure 2. Given an untextured 3D
model, an initial camera pose Pinitial and a depth image gener-
ated by SfM from the camera images, our algorithm utilizes gra-
dient representations of the input model and query image to ex-
tract features which are used in an iterative optimization scheme
to refine the initial camera pose. Using coarse poses Pcoarse

i close
to the initial camera pose, we render the model with ASG, yield-
ing multiple gradient images of the input model. The query im-
age is also transformed into a gradient representation. Thus, at
the end of the first step, we have a set of gradient images I∇ASG

i

extracted from the 3D model associated with coarse camera poses
Pcoarse

i and one gradient image I∇In corresponding to the query
image. In the second stage, we compute a dense correspondence
field between each I∇ASG

i and I∇In using the SIFT flow algo-
rithm (Liu et al., 2011). With these 2D-3D correspondences, we
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Figure 2. Overview of the processing pipeline of the co-registration algorithm: Gradient images rendered from the model are matched
to a gradient image of the photograph using SIFT flow. The correspondences determined are used to estimate the relative pose based
on a DLT. The final pose is selected in the verification step.

employ a Direct Linear Transformation (DLT) (Hartley and Zis-
serman, 2003) within a RANSAC loop to iteratively refine each
coarse camera pose Pcoarse

i to receive Pfine
i . Given the set of re-

fined camera poses, a final verification step selects the pose Pfine
i

with the smallest reprojection error as the output pose Pout.

3.1 Gradient Representations

The first step of the registration process is the computation of a
set of gradient images, which represents the model from different
perspectives. For this purpose, we perpetuate the initial extrinsic
camera parameters with Gaussian noise to generate multiple
views on the model distributed around the provided camera pose
Pinitial. Gradient images are generated from the model using the
generated coarse camera poses Pcoarse

i . Since the model does not
contain any color or gray value information, gradients can result
solely from shadings due to specific lighting of the scene. Hence,
we use ASG in the same manner as in (Plötz and Roth, 2017).
A gradient image can be described by convolving the image
matrix and derivative filters in the x and y directions:

||∇I|| =
√

(hx ∗ I)2 + (hy ∗ I)2, (1)

with I being the image and hx, hy indicating the derivative filters.
Under the assumption of a Lambertian illumination model and
the use of a point light source, the intensities of a rendered image
I can be described by:

I = max(0,−n>l). (2)

In this formulation, the normal direction is expressed by the vec-
tor n and the direction of light by the vector l. With predefined
light direction l, the combination of the above equations allows

the calculation of a rendered image in gradient representation.
However, the assumption of a fixed light direction has consid-
erable disadvantages. Discontinuities in the normal map, which
cause shadings under an assumed light direction and thus high
values in the gradient image, do not lead to observable gradients
under the assumption of a different light direction. The approach
of ASG counteracts this undesirable behavior. The observed
gradient strengths are averaged over all feasible light directions
l along the unit sphere S. The corresponding mathematical
description is:

||∇I|| =
∫
S

[ (
hx ∗max(0,−n>l)

)2

+
(
hy ∗max(0,−n>l)

)2 ] 1
2 dl. (3)

The exact calculation of ||∇I|| is very computation-intensive
due to the complex integrand. Therefore, approximations are
proposed by Plötz and Roth (2017) that allow the estimation of
||∇I|| in closed form:

||∇I|| ≈ 1

2

∫
S

[ (
hx ∗ n>l

)2

+
(
hy ∗ n>l

)2 ] 1
2 dl

≤ 1

2

√∫
S
(hx ∗ (n>l))2 + (hy ∗ (n>l))2 dl

=
1

2

√∫
S
((hx ∗ n)>l)2 dl +

∫
S
((hy ∗ n)>l)2 dl

=

√
π

3

√√√√ 3∑
i=1

(hx ∗ ni)2 + (hy ∗ ni)2. (4)
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(a) Normal maps (b) Average Shading Gradients

Figure 3. Gradient images created using Average Shading Gra-
dients. (a) Normal maps of the model, (b) Resulting gradient
images.

The designation ni indicates the x-, y- and z-component of the
normal map. For the proof of the equality of the expressions in
Equation (4), we refer to (Plötz and Roth, 2017). The represented
form enables an efficient calculation of the desired gradient im-
age, which is based exclusively on the convolution of the normal
map with derivation filters. Figure 3 shows result images, which
can be derived by means of ASG.

We use the presented approximation of ASG to render one gra-
dient image for each generated coarse pose Pcoarse

i . Features of
these images are to be matched with features of the query im-
age that is to be registered. In order to get comparable features,
the input image also needs to be converted to a representation
that contains gradients induced by shadings. Applying discrete
derivative operators on the single camera image, as proposed by
Plötz and Roth (2017), results in gradients which are related to
ASG computed on the model to a certain degree. To obtain even
more comparable gradients, we include additional camera images
captured with a small spatial offset to the query image. The added
images allow to compute depth information and normal vectors
for the query image by means of SfM. Consequently, we can uti-
lize ASG to transform the input image into a representation I∇In

equivalent to the gradient representations I∇ASG
i of the render-

ings.

3.2 Feature Matching

In order to match the rendered images to the query image, we
use the SIFT flow algorithm (Liu et al., 2011) computing dense
flow fields between each I∇ASG

i and I∇In. This algorithm works
similar to the optical flow method, determining a pixel-wise shift
between two images. Instead of computing correspondences by
individual pixel intensities, the matching in the SIFT flow algo-
rithm is based on the comparison of SIFT descriptors calculated
for each pixel. In order to prevent the assignment of pixels from
regions of homogeneous structure in the input image to empty re-
gions in the rendering, only pixels located in textured regions are
included in the calculation of the flow.

To compute correspondences, the flow vectors are first deter-
mined from the query gradient image I∇In to each rendered gra-
dient image I∇ASG

i , then from each rendered image I∇ASG
i to

the query gradient image I∇In. Pixel pairs connected by two
opposite flow vectors are recorded as corresponding pair. The
determined point correspondences are converted into 2D-3D cor-
respondences between the input image and the model. The 3D
model points are reconstructed from the appropriate points of
the rendered images by considering the associated coarse cam-
era poses Pcoarse

i .

3.3 Pose Estimation

Given the determined 2D-3D correspondences, we improve suc-
cessively each coarse pose Pcoarse

i . Assuming that enough cor-
rect correspondences have been detected, a RANSAC scheme can
be used to reliably determine the relative camera pose between
the query image and the model. Within the inner RANSAC loop,
six 2D-3D point pairs are randomly selected from the available
correspondences. From these, intrinsic and extrinsic camera pa-
rameters are determined by applying the DLT algorithm (Hartley
and Zisserman, 2003). Subsequently, we check how many of the
given correspondences support the determined camera pose and
form a consensus set by computing the reprojection error for each
correspondence. The camera pose corresponding to the largest
consensus set represents the result and thus the improved camera
pose Pfine

i . Empirically, we have found that a good termination
criterion is the computation of a consensus set that contains at
least 65 % of all correspondences. If this criterion is not met, the
calculation is aborted after a maximum number of 500 iterations.

3.4 Plausibility Check

The final step of our automatic co-registration process selects the
most appropriate camera pose from all the refined poses Pfine

i .
Since a correct registration is not possible in every case, we
also use this step to decide on the success of the registration.
For this purpose, the mutual reprojection error is calculated in
pairs between all refined pose estimates. This is defined by the
following equation:

δ(P,P ′) =
1

2

(
1

|V|
∑
x∈V

||P(x)− P ′(x)||2

+
1

|V ′|
∑
x∈V′

||P(x)− P ′(x)||2

)
. (5)

P and P ′ denote poses which project the model coordinates into
an image plane; V and V ′ denote the set of visible points in the
image area. Thus the error measure describes the mean Euclidean
distance between visible pixels. If the error for two poses is be-
low a threshold value, which is fixed to 5 % of the longest image
dimension, the considered poses are considered compatible. An
undirected graph is defined by the compatibility relationship of
all poses to each other. The nodes of the graph each represent
a camera pose. The edges of the graph represent the compati-
bility between camera poses. By means of a depth-first search,
the largest connected component of the graph is determined. If
this contains more than three nodes, the registration process is
considered successful. As the final pose Pout we select the pose
from the largest connected component of the graph, for which
the largest consensus set was reached in the previous RANSAC
scheme.

4. EXPERIMENTS

The quantitative evaluation of the registration procedure is based
on a dataset comprising 164 aerial photographs captured with a
DJI Phantom 3 Professional. These depict a free-standing build-
ing from three sides at three different heights (2 m, 8 m and 15 m).
Background objects, such as trees or people, are also depicted
and may differ between the images. Figure 4(a) shows a selec-
tion of the aerial photographs used. Based on all given images,
a 3D point cloud is created using the SfM pipeline COLMAP
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(a) Input images

(b) Point cloud (c) Mesh model

Figure 4. (a) Example images of our dataset. The point cloud
generated from the images can be seen in (b).(c) Resulting mesh
model.

(Schönberger and Frahm, 2016; Schönberger et al., 2016) (Fig-
ure 4(b)). From the relevant points, i.e. those representing the
building, a surface model was generated by a triangular mesh-
ing. The Poisson Surface Reconstruction method (Kazhdan et
al., 2006) provided in COLMAP, was used for this purpose. A
view of the mesh model is shown in Figure 4(c). The resulting
model shows some errors due to the limited accuracy of the point
cloud.

Aerial photographs are usually taken using unmanned aerial vehi-
cle (UAV) systems equipped with GPS and Inertial Measurement
Unit (IMU) sensors. This allows to derive a camera pose for each
image, which can then be used to initialize the registration pro-
cess. Since the dataset used does not contain any sensor data, we
simulate the initial camera poses Pin by applying additive white
Gaussian noise to the translation and rotation parameters of the
ground truth poses PGT. The ground truth poses are derived from
the SfM process on which the 3D reconstruction is based.

For our experiments, we have selected 50 test images of the
dataset associated with initial camera poses and scaled them to
a size of 505× 275 pixels. When selecting the images, we took
care to cover as wide a range of perspectives as possible. For each
registration process of our tests, we generated and improved 15
coarse poses and automatically choose the best refined pose.

4.1 Accuracy and Success Rate

We evaluated the presented co-registration algorithm (hereinafter
referred to as ASG approach) with respect to the accuracy of the
estimated camera poses and the success rate of the registration.
Using the ASG approach, all eleven degrees of freedom of the
desired camera pose can be determined. However, in many ap-
plications, intrinsic camera parameters are given by a prelim-
inary sensor calibration. Under these conditions, an Efficient
Perspective-n-Point (EPnP) method according to (Lepetit et al.,
2009) can be used instead of the DLT to estimate the camera pose
from 2D-3D correspondences. The performance of the presented
co-registration algorithm was evaluated for both initial conditions
(intrinsic parameters known and unknown) using 50 selected im-
ages. During our tests, we successively increased the mean ini-
tial error, which represents the average displacement of the initial
poses Pin in relation to the true poses PGT. We quantify initial
errors by the mutual reprojection error as defined in Equation (5).

First we have examined how many images are rated as success-
fully co-registered by the automatic registration process. Fig-
ure 5 presents the corresponding results for the assumption of
known and unknown intrinsic camera parameters. The results

Percentage of
registered

Average initial error [pixel]

100

80

60

40

20

0
30 40 50 60 70 80 90 100

unknown

known

Intrinsic camera
parameter

images [%]

Figure 5. The rate of success for known and unknown intrinsic
camera parameters.

Initial error Intrinsics Accuracy Error range
30.19 unknown 3.10± 2.01 1.22− 11.93

known 1.27± 0.54 0.57− 2.20

56.90 unknown 4.10± 3.31 1.32− 15.75
known 1.54± 1.37 0.28− 8.40

79.53 unknown 4.39± 3.26 1.49− 16.85
known 1.81± 2.13 0.41− 12.86

103.83 unknown 3.70± 2.50 1.87− 12.50
known 2.51± 1.71 0.85− 6.50

Table 1. This table holds the accuracy of our co-registration ap-
proach for various mean initial errors under known and unknown
intrinsic camera parameters. The accuracy is given by the mean
value and the standard deviation of the reprojection errors of reg-
istered images.

show that, under the condition of unknown intrinsic parameters,
more images are accepted as successfully registered. This is due
to the fact that the camera pose can be adapted more flexibly to
the found correspondences due to the higher degree of freedom.
However, as shown in the following section, this is at the expense
of the accuracy of the estimate. It can also be seen that, as the ini-
tial error increases, the registration task becomes more demand-
ing and some of the images are not registered. With low initial
errors of about 30 pixels, 90 % and 82 % of the images are ac-
cepted within the automatic verification, whereas a medium error
of about 100 pixels only results in 66 % and 54 %, respectively.

A second aspect that was evaluated is the improvement of the
initial errored poses by the proposed co-registration. Again, we
use the mutual reprojection error (Equation (5)), to evaluate the
pose estimation. To summarize the distribution of the errors, the
mean value, the standard deviation and the range of the reprojec-
tion errors are stated. The resulting error statistics for known and
unknown intrinsic camera parameters are shown in Table 1 for
comparison.

The following observations are made: The maximum reprojec-
tion error with respect to all registered images is 16.85 pixels.
This corresponds to about 3.3 % of the largest image dimension.
Even with a small initial error of about 30 pixels, this is equal to
a reduction of the error by almost 50 %. From this, it can be con-
cluded that automatic verification only accepts estimates that are
more accurate than the given incorrect pose Pin. Furthermore, it
is shown that the average reprojection error can be reduced to up
to 3.1 pixels when estimating all camera parameters. If the intrin-
sic parameters are already given, an average value of 1.3 pixels
can be even achieved. Even with high initial errors of more than
100 pixels, good pose estimates with an average reprojection er-
ror of 3.7 or 2.5 pixels are achieved by our co-registration pro-
cess. This corresponds to an improvement to 2.63 % or 1.07 %
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of the mean initial error. The large differences in the reprojection
errors between the various test images, which can be seen in the
large error ranges, are noticeable. The high standard deviations,
which are in the same order of magnitude as the mean value it-
self, also indicate a strong scatter of the errors. Certain viewing
perspectives of the scene are therefore more difficult to estimate
than others. The examination of individual results shows: If dif-
ferent sides of the building are depicted on a query image, a more
precise registration can usually be made than for images in which
mainly one side of the building is visible. This is due to the in-
fluence of the spatial constellation of the correspondence points
on the accuracy of pose estimation methods. Thus the equation
system of the DLT gets singular or numerically unstable for a
planar point set. The EPnP method explicitly distinguishes the
planar point configuration from the non-planar case, resulting in
increasing inaccuracy in the intermediate near-planar case.

Figure 7 shows sample images for which our registration algo-
rithm fails. It can be seen that these are images where all visible
points of the building have a similar distance to the camera.

In summary:

• With the automatic verification, on the test data our regis-
tration approach only provides camera poses that are more
accurate than the initial camera poses.

• The average reprojection error of the camera poses is im-
proved by the registration process up to 1.07 % of the aver-
age initial error.

• The achieved accuracies increase only slightly for high ini-
tial errors.

• With known intrinsic camera parameters, a more precise es-
timation of camera poses is possible.

4.2 Comparison to an ICP Implementation

In order to rate our results obtained, we compared the accuracy
and success rate of our approach to a standard Iterative Clos-
est Point (ICP) implementation. Within the evaluation, we used
the implementation of the software library Point Cloud Library
(PCL) (Rusu and Cousins, 2011). In order to use the ICP algo-
rithm to estimate the relative pose between an image and a model,
the input image needs to be represented as a point cloud. This is
possible if depth information of the image and the intrinsic cam-
era parameters are known. These requirements were also met for
the ASG approach, which only estimates extrinsic camera param-
eters. In contrast to our approach, the ICP algorithm achieves an
alignment of two point clouds. The relative camera pose between
image and model can then be derived from the transformation
required for the alignment.

For the evaluation, we used 10 images which are registered once
by the ICP algorithm and once by our ASG approach. Regarding
the ICP method, the registration of an image is evaluated as suc-
cessful if the reprojection error under the estimated camera pose
falls below a threshold value of 20 pixels. Whether a successful
registration was achieved by applying the ASG approach is still
decided automatically. Table 2 shows the number of successfully
registered test images for the different approaches. For a small
average initial error (approx. 50 pixels), the ASG approach is su-
perior to the ICP process. If the average initial error is almost 80
pixels, the success rate is identical with 6 out of 10 images. If

Initial error ASG ICP
30.25 9 6
55.12 8 6
80.22 6 6
101.15 3 6

Table 2. This table shows the number of successfully registered
images using ASG and ICP approaches. A total of 10 images
were used for the test.

Initial error Test images ASG ICP
30.25 6 1.12± 1.22 11.16± 4.45
55.12 6 2.13± 2.82 9.70± 5.60
80.22 4 1.89± 1.25 10.41± 4.50
90.51 3 2.80± 1.48 10.60± 5.84

Table 3. This table indicates the accuracies achieved using ICP
and ASG approaches. The mean value and the standard devia-
tion of the achieved reprojection errors are given. For the error
determination, only test images were used which were registered
successfully by both procedures.

the initial errors are further increased, the number of registered
images remains constant for the ICP method, while it drops to 3
for the ASG approach.

To compare the accuracy of the two methods, we determined the
reprojection errors for all test images that can be successfully reg-
istered by both methods. Table 3 shows the corresponding error
statistics (mean and standard deviation of reprojection errors) for
increasing initial errors. It shows that the average error resulting
from the pose estimates of the ICP method is about five times
higher than that of the ASG method. Therefore, the ASG method
allows to estimate camera poses closer to the true pose than the
pose estimates provided by the ICP method. The poorer perfor-
mance of the ICP method can partly be explained by noisy depth
values of the aerial photographs. These have a negative effect on
the accuracy of the point cloud, which results from the backpro-
jection of the depth image. As mentioned before, the used point
cloud of the model is also erroneous. The difficulty to adjust two
noisy point clouds to each other is reflected in the high repro-
jection errors. ASG registration is more robust to errors in the
input data. This can be explained by the fact that the geometric
error minimized within the RANSAC scheme is based only on
selected 2D-3D correspondences. These correspondences were
previously determined using stable characteristics. In contrast,
in the ICP procedure, all model points are included in the cal-
culation of the error to be minimized. The observations of the
comparison of registration procedures can be summarized as fol-
lows:

• The accuracy of the estimated camera parameters using the
ASG approach exceeds one of the ICP implementation. The
reprojection error is on average five times smaller.

• At given initial poses with a mean reprojection error of less
than 60 pixels, more images can be registered using the ASG
approach than using the ICP implementation.

• For rough pose estimates with a mean reprojection error of
over 80 pixels, more images can be registered by means
of the ICP implementation than by means of the ASG ap-
proach.
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Figure 6. Qualitative results showing the input image together with a projection of the input model given the corresponding camera
pose. The input model of the building structure is projected in transparent colors, which encode the normal vectors of the model
surfaces. In the first row, the input model is projected given the initial camera pose. These images clearly show the error in the camera
pose with which our algorithm is initialized. The images in the second and third rows depict the results of our co-registration algorithm
for known and unknown camera intrinsics. The fourth row shows the results of the ICP algorithm. The results indicate that, in most
cases, our algorithm achieves a good alignment between the input model and the input image.

Figure 7. Images that cannot be registered by our algorithm.
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4.3 Qualitative Results

Figure 6 shows a selection of the results of the evaluated co-
registration algorithms. It can be seen that our algorithm (second
and third row) can handle large initial errors in the translation
as well as minor errors in rotation. It can be observed that our
proposed algorithm, based on the assumption of known intrinsic
camera parameters (ASG with EPnP), gives the most accurate re-
sults. The estimation of the full camera pose (ASG with DLT)
commonly yields similar results, but in some cases larger errors
can be detected. For example, in the projection of the center im-
age in Figure 6, the roof of the building disappears. Furthermore,
it can be seen that registration by means of the ICP algorithm
also improves the given poses Pin. However, the deviations from
the true poses are greater than the deviations obtained using our
algorithm.

5. CONCLUSION & FUTURE WORK

In conclusion, we proposed an algorithm to automatically esti-
mate the relative camera pose between aerial imagery and untex-
tured 2.5D or 3D model data. To refine an initial guess of the
camera pose, we compute feature-based dense correspondence
fields between an aerial photograph and rendered images gen-
erated from different perspectives on the model. Since textural
features are not present in the model, the compared features are
derived from gradients that are based solely on the object geome-
try. To obtain such gradients related to the photograph as well as
gradients related to the model, we use ASG, a method in which
observable gradients from shadings are averaged over all possi-
ble light directions. Our evaluation shows that initial error-prone
camera poses are significantly improved by our registration algo-
rithm. Especially under the condition of calibrated camera sen-
sors, good results are achieved. The error can thus be reduced
to up to 1.07 % of its initial value. With regard to the accuracy
of estimated camera poses, our presented approach exceeds the
results provided by the ICP algorithm. In addition, the automatic
verification of the pose estimation provides a reliable statement
about the success of the registration.

In our future work we want to integrate and evaluate further
suitable methods for the estimation of poses from correspon-
dences into our method instead of DLT or EPnP. In particular,
approaches that include existing depth information of the input
image are of interest. In addition, we want to evaluate the the dif-
ference in performance between methods that use line features,
such as those extracted with the help of ASG, and methods that
rely on point features.
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