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ABSTRACT: 

Water flow dynamics of a river has significant effect in the ecological functions played by the river. There exists an intricate relationship 

between discharge in a river and phenomenon such as sedimentation, prevalence of vegetation and river morphology. In order to better 

understand these phenomena, it is important to determine the velocity of the river. While there exist conventional in-river velocity 

measurement techniques, UAS based method offers the capability to make large number of measurements at a large number of locations 

without the need to place measuring instrument at each of these locations. In this paper, we present the results of application of UAS 

in determining surface velocity of river. In this study, we released floats along the river and captured videos by mounting RGB sensor 

as well as thermal sensor in the UAS. The videos were processed using OpenCV library as well as Matlab’s Image Processing Toolbox. 

This paper discusses the learnings of our study which indicates that videos captured from UAS can be used to determine surface 

velocity of a river.  

1. INTRODUCTION

Water is essential to life on earth but increasing demands with 

limited supply is making it a scarce commodity. For water to be 

useful to humans, it needs to be both adequate in quantity and 

quality. The quantifiable global change has also altered regional 

weather patterns that modify river discharge, making water 

supplies from rivers less predictable (Dobriyal et. al., 2017). 

Water flow dynamics of a river has significant influence in the 

ecological functions played by the river. An intricate relationship 

exists between the discharge in river and important phenomena 

such as sedimentation, prevalence of vegetation and river 

morphology (Vargus-Luna, Crosato, & Uijttewaal, 2015). One of 

the crucial measures for the determination of water flow 

dynamics is determination of its velocity pattern. Conventionally, 

the velocity of the river is determined using in-river methods such 

as float method, dilution method or by use of current meter 

(Tazioli, 2011). Although accurate result can be achieved through 

these in-river methods, in order to understand the surface flow  

dynamics of a river, large number of measurements at a large 

number of locations is desired. Obtaining these through in-river  

methods is cumbersome and time consuming. Therefore, 

alternate methods which provides larger number of 

measurements with less field effort is desirable. In this regard, we 

explored use of videos from UAS as an alternative method to 

determine river velocity. We explored the idea of using both 

RGB sensors and thermal sensors to capture the videos.

2. STUDY AREA

The section of the River Aa specific to our study lies to the 

Southwest Münster city (Figure 1). In the past, this section used  

to be a straight concrete canal. Now, this stretch of the river (all 

the way to the Lake Aa) has been re-naturated under the EU WFD 

(Vision Wasser, 2017). The land use on both sides of the 

riverbank are for agriculture where wheat and rye are grown. As 

a result, there are high levels of phosphates from fertilizers 

running off into the river or leeching into the river via 

groundwater (ibid.). The combination of high temperatures in 

summer months and high nutrient loads in the river spurns algal 

blooms that are detrimental to the aquatic ecology of the river. 

To mitigate the effects of river pollution, twelve re-naturation 

projects along the river Aa were implemented between 2000–

2014 (Helmut, 2014). In our study area, the river had been 

widened and made to meander so that its course resembles what 

it used to be like in 1830 before it had been canalised (ibid.). In 

addition, the banks of the river have been re-vegetated to create 

a buffer of vegetated swales that help to removes coarse and 

medium sediments and convey storm water in lieu of concrete 

drainage pipes. These swales not only prevent flooding of the 

river by slowing the through flow of water into the river, but also 

control pollution levels in it by absorbing excess nutrients of 

ground water. 
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Figure 1. A true color image of the study area captured by UAS 

in 2018 

 

3. METHODOLOGY 

 

3.1 Experimental Design and Equipment 

The experiment was designed to capture videos with both RGB 

and Thermal sensor while we released three floats in the river. A 

UAS mounted with a Sony A5100 RGB digital single-lens reflex 

(SLR) camera and a Forward Looking Infrared (FLIR) Ocean 

Scout TK thermal sensor (figure 2a) was made to hover above 

the river while the floats drifted along the river The resolution of 

the image taken using RGB sensor was 1080x1920 and that using 

thermal sensor was 240x320. 

 

 

Figure 2a. A photo of our UAS with an RGB camera and a 

thermal sensor attached. 

 

 

Figure 2b. Three floats in different colours with chafing fuel and 

aluminium foil inner linings.  

The floats were cylindrical in shape and constructed from 

buoyant hardened Styrofoam material with a depression made in 

the centre to contain chafing fuel that produced heat and a layer 

of aluminium foil that acted as a heat reflector. Thus, when the 

top of the float is viewed with a FLIR thermal sensor, the chafing 

fuel would be detected as a local hot spot. The remaining buffer 

that circumvents the depression was coloured luminous pink 

(with spray paint), metallic (wrapped in aluminium foil), and 

yellow (colour of the Styrofoam) to distinguish the floats from 

each other during the subsequent RGB video processing (figure 

2b). We placed aluminium sheets across our study area (figure 1) 

as ground control points (GCPs) to georeference video scenes. 

Aluminium sheets were used as these can be detected easily in 

the RGB image as bright spots (because of their high reflectance) 

and in the thermal image as cold spots (because of their low 

thermal radiance).  

 

3.2 Video and Data Processing 

The video and data processing was divided into three stages: 1) 

Video pre-processing, 2) Object detection, and 3) Coordinate 

transformation. In the video pre-processing stage, we clipped the 

section of the video in which both floats as well as the ground 

control points were visible. In the object detection stage, we used 

OpenCV (Laganierre, 2014; OpenCV, 2017) library and 

Matlab’s (2017) Image Processing Toolbox to detect the floats in 

the videos. Finally, we transformed the image coordinates of the 

detected floats into real world coordinates. For this, we generated 

transformation parameter for each image frame based upon 

image coordinates of the ground control points (aluminium 

sheets) and their real-world coordinates (2D linear convolution, 

Jähne, 2005). This transformation parameters were used to 

compute the real-world coordinates of the floats from their image 

coordinates. The generalized workflow is illustrated in Figure 3. 

 

 

Figure 3. Generalized workflow- thermal and UAS rgb images 

are being matched by GCP’s, facilitating the auto-detection of 

floats (movement) in a geospatial context 
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4. RESULTS 

In the pre-processing stage, we realized that the field-of-view of 

the thermal camera was too small that it captured only the floats 

but not (atleast 3) ground control points in a single frame. At least 

three ground control points are necessary to compute 

transformation parameters. Although, we were successful in 

detecting and extracting the image coordinates of the floats in the 

videos captured from thermal sensor (Figure 4b), their positions 

could not be converted into real world coordinates. We could 

only use RGB videos in order to determine the velocity of the 

floats. A snapshot of the GCPs and floats which are detected in 

the RGB videos are shown in figure 4a. Some selected data is 

also available on YouTube:  

www.youtube.com/channel/UCnQv0lFlrs0WeDQ7HYbgCsA.  

 

 

Figure 4a. Floats detected in RGB imagery  

 

 

Figure 4b. Floats detected in thermal imagery  

We used Template Matching in OpenCV to detect the objects in 

RGB video. A template of the float was provided as input based 

on which it would be identified in each subsequent frame. 

Template Matching would only work for very close (and very 

few) frames. In case, there were slight changes in reflectance due 

to the change in orientation of camera as the UAS hovered, the 

Template Matching in OpenCV failed to detect the correct float. 

The rate of correct detection of float was slightly improved by 

dynamically updating the template in each subsequent frame.  

Even so, Template Matching failed to continuously detect the 

floats for a longer duration of time. However, we had very good 

results in detecting the Ground Control Points using Template 

Matching. In comparison, the rate of float detection was much 

more successful in Matlab. Hence, we used coordinates obtained 

from Matlab to determine the velocity as shown in figure 5. In 

general, the velocities we calculated ranged between 0.45–

1.50ms-1.  

 

 

 

Figure 5. A plot of the velocity of the three floats colour coded 

into red, blue and yellow. Other than colour, the size of the points 

are directly proportional to velocity. 

 

5. DISCUSSION 

Our plot (figure 5) shows that once the floats have been set in 

motion along the River Aa, their velocities varies as they drift 

along the river. Using RGB videos from UAS we were able to 

detect the floats and compute their velocity at a large number of 

locations within a very short time. The large number of 

measurements can be potentially used to model the surface 

velocity of the river. Due to constraints of our own, we have not 

calibrated the velocity of the float with the velocity of the river. 

So, we cannot claim that we have computed the velocity of the 

river but rather the velocity of the float. However, this can be 

done by calibrating with in-river measurements.  

In terms of the sensors used, our study showed that the narrow 

field-of-view of thermal sensor as well as its low-resolution poses 

challenge and hence a more careful flight planning is necessary.  

 In terms of our methods, the two algorithms we used for object 

detection have their own strengths and weaknesses. The template 

matching algorithm in OpenCV had particularly good results in 

detecting features which did not have large changes in size, 

orientation and reflectance such as our GCPs. However, this 

algorithm required many adjustments to detect moving floats 

when there were sharp changes in reflectance as they passed 

through shaded regions. Algorithms we applied in Matlab, based 

on filtering individual bands with thresholds (related to intensity 

and morphological features) provided good results on detecting 

the floats. Hence, we combined these two approaches by 

detecting GCPs using the template matching algorithm in 

OpenCV and detecting floats using Matlab. 

 

6. CONCLUSION 

Our study indicates that it is feasible to use UASs to measure the 

velocity of rivers by processing videos captured by sensors from 

a UAS. Our research successfully underlines the feasibility of 

using UASs for determining surface velocity of river. The use of 

UASs here provides high spatial and temporal resolution to 

monitoring the river velocity and its convenience is a boon to 

researchers as an ‘add-on’ device. However, we do not suggest 

that UASs can replace conventional in-river measurements of 

velocity that are more accurate. Rather, velocity measurements 

derived from UAS products are complementary to existing 

techniques so that calculations are more robust. Moreover, UASs 
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can provide more data collected quickly and conveniently, which, 

for example, can be applied in to modelling the surface flow of a 

river. 
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