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ABSTRACT:

We introduce a fully automated only path planning approach especially for drones. This novel method relies on usage of a stereo
camera mounted at the bottom of a hexagonal drone for real-time point cloud reconstruction and localization. The real-time point cloud
is analyzed in a software loop where the entropy of the point cloud and the surface normals are calculated. The low entropy positions
(which indicate the 3D areas with less point density and less information) and the surface normals are used for calculating the next
inspection point which can be targeted by the drone in order to enhance the point cloud best. Path planning to these automatically
selected target points is done during the flight (quite real-time) and automatically. The initial experiments are performed on Gazebo
simulation environment within the ROS system using realistic parameters of our real drone and real stereo camera.

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have become a successful cost-
effective tool for various civilian applications such as visual in-
spection, surveillance, and mapping. Most of the current opera-
tional applications are restricted to passive tasks. However, UAVs
can be also used in active tasks like contact-based inspection,
aerial grasping, and aerial maintenance. This has stimulated re-
searchers to investigate interaction control of aerial robots (Rug-
giero et al., 2018). Impedance control is a widely used method for
interaction control, where virtual springs and dampers are used
to control the behavior of a robot. Thus, allowing an aerial robot
to perform an interaction task, like grinding or polishing, with a
complexly shaped body (Fasse and Broenink, 1997). In practice,
the principal stiffness directions of the impedance controller are
aligned with the surface normal of the desired body to be handled.
In most of the scenarios which are addressed by the literature,
there is at least a rough prior-knowledge about the body which
needs to be investigated. This prior-knowledge might be known
from a CAD/CAM model of the ideal body, or GIS data or point
clouds acquired by laser imaging or photogrammetry. To allow
UAVs to autonomously perform interaction tasks on unknown ob-
jects, it needs to visually build a 3D reconstructed model of the
object. Rough knowledge about the structure can give opportu-
nity to apply a pre-segmentation to the 3D environment and al-
ready design a flying path before starting inspection with drone
(Mansouri et al., 2018). Even when the drone can make a path re-
planning during the flight depending on the details inspected on
the structure, the algorithms are still not totally unaware of what
to expect approximately where.

Herein, we introduce a framework which is able to make path
planning on the flight without having any prior information about
the environment and the structure which needs to be investigated.
Stereo cameras placed on the drone enable us to create a rough
representation of the 3D environment in real-time, in order to de-
termine the object of interest which must eventually have a dense
and accurate 3D model.
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We have conducted our research and experiments in order to an-
swer the following main question;

In order to generate a complete 3D visual model of an unknown
object, is it possible to determine a suitable flight direction, con-
sidering the completeness of the model on-the-fly?

In addition to that, during our experiments, we have kept the fol-
lowing question in our minds;

If it is possible to generate path online, would it help to create
a better point cloud or would it make the path more time/energy
saving for drone?

We have conducted our experiments on Gazebo environment in
ROS using a hexagonal drone with a stereo camera. We have
selected the drone and the camera parameters similar to our real
drone and camera system in order to be able to perform the exper-
iments on the real environment after experiments on the simula-
tion platform. Our simulation experiments indicate high potential
of our framework in order to perform fully automated 3D recon-
struction and inspection work on environments without prior in-
formation. In the future, such 3D reconstructed visual model will
allow the drone to perform the interaction task with any complex
shaped body with more autonomy without the prior knowledge of
the geometry of it. Next we explain our method and we provide
our experimental results in detail.

2. METHOD

For generating the rough real-time 3D environment models, we
benefit from the robust approach ORBSLAM2 which extract vi-
sual features (ORBs) and finds their 3D positions based on a
stereo camera observation (Mur-Artal and Tardós, 2017). ORB-
SLAM2 algorithm results with generating a point cloud where
each point corresponds to the ORB features located in the correct
position within the 3D environment.

The workflow of our novel, fully automated and active drone path
planning algorithm is represented in Figure 1. The mathematical
implementation details of each algorithm step are listed below.
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Figure 1. Work flow of the proposed autonomous UAV path planning algorithm.

(1) At this first step, the drone starts moving upwards while not
moving in any angular direction. During this lifting period, the
stereo camera captures frames and the ORBSLAM2 algorithm
already starts building a point cloud.

(2) An initial rough voxel segmentation is used to determine the
most dense area (approximately). We assume that the object of
interest stands within this very dense area and the rest of the
points are probably coming from the outliers, shadows, neigh-
bour objects or calculation errors.

(3) The most dense voxel is assumed as the search cube. The
center of mass in this voxel (based on the point locations), is taken
as the center where the drone will use as the origin when it is
designing circular paths.

(4) The initial path is planned as a circle around the search cube.
This circle assumes the center as the ’center of mass’ which is
calculated in the earlier step. The radius is taken as equal to 1
meter added to the half of one voxel edge (rflight = 1 + robject
where one voxel edge is 2 ∗ robject.)

(5) While drone is flying through the initial path (a circle with
a rflight radius around the origin), ORBSLAM2 generates the
initial point cloud of the object of the interest.

(6) The point cloud is segmented into 4 equal pieces around the
origin point. (Fig. 4 shows the segments of an example point
cloud, in order to represent how they are divided in 3D space.)

In our earlier experiments, we have applied segmentation on our
point cloud by looking at 3D point cloud normal vectors and
calculating the differences of normals (DoN) (Y. Ioannou and
Greenspan, 2012) as a clue of the 3D object separation. The
automatic segmentation of the point cloud could lead to precise
calculation of the segments which have low entropy values. How-
ever, the time requirement of the DoN computation made us look
for simplified solution in order to be able to choose the segments
real-time during the flight.

(7) Again at this step, our initial idea was to calculate 3D local
entropy values by calculating 3D local point cloud density and
finding its 3D local minimums. After implementing this math-
ematical method, we noticed that the work flow became really
slow for online autonomous planning. Especially, as the point
cloud becomes denser, with time the workload increased and the
real-time operation became unrealistic. We believe that the 3D
local density minimum calculation could be done realistically if
it is implemented on a GPU with multiple workers. However, for
this initial experiment, we have decided to simplify the entropy

calculation. We have calculated one entropy value for each seg-
ment which is equal to the number of points within the segment.
This simple calculation gave us opportunity to select the segment
with the lowest entropy value in milliseconds time frame, while
still finding out a meaningful position which needs to be targeted
by our drone to get more information.

(8) For the next flight position, only the segment which has the
lowest entropy value is taken into account. The (xT , yT , zT ) val-
ues of the target position is calculated as rflight meter further
away from the points which are in the half height of the segment.

(9) The flight path is computed as a circular route (with a rflight
meter radius) from the last position (x(t), y(t), z(t)) of the drone
to the (xT , yT , zT ) position. While the drone is flying to the
next target position, the ORBSLAM2 algorithm continues adding
more points to the point cloud and denser representation of the
other object regions are generated on the way. When the drone
reaches to the target point, the segmentation and entropy calcu-
lation algorithms are repeated. In this way, the drone continues
finding the lowest entropy areas of the generated point cloud and
finding the next target position in order to make more observa-
tions and continue filling the point cloud. In this way, we can
densify the point cloud until a satisfactory density value (a pre-
determined threshold) is reached. This fully automated path plan-
ning algorithm helps us to guarantee to not have holes or poor
density information in some local areas of the 3D model.

In the next section, we compare the proposed autonomous path
planning with the classical approach for building point cloud of
an object (turning around the object in a certain flight radius with
a certain speed while increasing its height with a constant speed).

3. EXPERIMENTS

We have implemented our algorithms within the ROS framework
and the image acquisitions are done with a simulation of the
stereo camera mounted on a drone in Gazebo environment as pre-
sented in 3 (Furrer et al., 2016). In order to make the assessment
easier, we have started to our experiments by using a cylindrical
structure for 3D reconstruction. However, usage of the cylindri-
cal structure also helps us to consider our framework for a future
work on 3D reconstruction and inspection of wind turbines.

The simulation environment includes the object of interest which
is a cylinder with 1m radius (robject), 3m height (h). The start
position of the drone is always on the x/y plane at the y0 = 0
and x0 = rflight (at the boarder of segment0 and segment 3,
and the flight radius rflight is absolute to the object center). The
stereo camera is placed at the bottom of the drone in a way where
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nrotations npoints

5 5047
10 6982
15 7573
20 7944
25 8802
50 8637
100 8846

nrotations npoints

5 5200
10 4565
15 4477
20 4255
25 3993
50 3856
100 3931

Table 1. Column 2: Amount of points captured when flying a
helix with a radius of 2m (1m distance to the object surface)
with ω = 0.25rad/s. Column 4: Amount of points captured
when flying a helix with a radius of 3m (2m distance to the

object surface) with ω = 0.25rad/s.
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Figure 2. Plot showing the number of points captured when
flying a helix with different radius and rotations at

ω = 0.25rad/s

the propellers cannot occlude the field of view. The field of view
angles offer the following angles;HFOV = 66◦ and V FOV =
49.5◦ In order to make the environment realistic, the cylinder
object is textured with a real photo and a directed sunlight is used.
The sunlight is directed at segment 0’s center, therefore segment
2 is kept fully in the shadow, while 1 and 3 are in the transition.

We first started with hard-coding a helix shape flight path with
the formula provided at Equation 1 Flying in a helix shape path
is commonly used in many inspection applications. In Table 1,
we have provided a list of number of points when different flight
radius and different number of rotations are chosen for this hard-
coded setup. For better analysis, the table values are plotted at
Fig. 2.

x(t) = −r · cos(ωt) + x0

y(t) = r · sin(ωt) + y0

z(t) = vz · t+ z0

ψ(t) = −ωt+ ψ0

(1)

Next, we provide the analysis from the autonomous experiment
using the proposed work flow. For this experiment, we have as-
sumed that the mass center of the point cloud is determined al-
ready. Therefore the flight radius rflight is provided to the al-
gorithm by user. The angular velocity ω in positive rotational
direction at a constant speed. After the drone made the initial

step ntolal nseg0 nseg1 nseg2 nseg3

0 2463 1090 393 325 655
1 2262 686 364 325 887
2 2277 438 375 753 711
3 2495 790 687 398 620
4 2514 894 445 396 779

Table 2. Amount of points n captured at each step when flying
the autonomous segment inspection with a rflight of 2m (1m

distance to the object surface) with ω = 0.25rad/s

step ntotal nseg0 nseg1 nseg2 nseg3

0 2433 248 494 882 809
1 2579 383 494 882 820
2 3394 829 932 808 825
3 3631 811 983 1011 826
4 3581 811 882 894 994

Table 3. Amount of points n captured at each step when flying
the autonomous segment inspection with a rflight of 3m (2m

distance to the object surface) with ω = 0.25rad/s

turn around the origin on a circular path with rflight radius, the
point cloud is segmented into four major pieces and the segment
with the lowest entropy is selected. After the segment with the
lowest entropy is determined and the shorter path either in pos-
itive or negative rotational direction on this circle is taken. At
this step, also the neighbour segment with the lower entropy is
determined and designated as the following segment for step 2.
The remaining segments of steps 3 and 4 are visited in the same
rotational direction as the segment of step 2 was compared to the
one of step 1. This keeps the total path and therefore the flight
time shorter.

During all these steps rflight and z = 3m stays constant and ω
is limited. The results for different rflight at ω = 0.25rad/s can
be found in Table 2 and 3 and are plotted in Figure 5 and 6.

Our experimental results show that the fully autonomous online
path planning algorithm can generate similar number of points
to the hard-coded helix path while doing less turns around the
object. This means that the autonomous inspection can lead to
reconstruct a larger area while using the energy of the drone con-
sciously. Although, our total point cloud shows increase of the
points during the inspection period, point numbers of some seg-
ments decreased. The reason is that, when ORBSLAM2 observes
the same points again, some unreliable points are later removed.
Therefore, decreasing point number does not indicate decrease in
performance. We expect the performance to increase while the
autonomous inspection repetitively finds the next target position
to fly and fill the point cloud better. We will continue to our more
detailed performance analysis in our future steps.

4. CONCLUSIONS

Herein we have introduced a novel fully automated drone navi-
gation method for 3D reconstruction of the structures when pre-
knowledge of the structure shape, size and complexity are not
available. Our experimental results indicate high potential of our
framework in order to perform fully automated 3D reconstruction
and inspection work on environments without prior information.
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Figure 3. Our simulation environment: A drone with a stereo camera can create its flight path online, in order to make sure that the
object of interest can be fully 3D reconstructed.

Figure 4. Side and top view of detected points. Point cloud is false colored in order to show the different segments. (Segment 0 = red
points, Segment 1 = blue points, Segment 2 = green points, Segment 3 = yellow points.
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Figure 5. Plot showing the number of points captured at each
step when flying the autonomous segment inspection with a

radius of 2m (1m distance to the object surface) with
ω = 0.25rad/s
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Figure 6. Plot showing the number of points captured at each
step when flying the autonomous segment inspection with a

radius of 3m (2m distance to the object surface) with
ω = 0.25rad/s

In our next steps, we will test our algorithms on more complex
structures in order to identify the 3D reconstructed challenges of
the proposed autonomous framework. Furthermore, we will iden-
tify the required steps in order to improve the algorithm for doing
inspection by physical interaction with the structure. Last but not
least, we will continue our experiments using an actual drone, in
addition to our ROS simulations.
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