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ABSTRACT: 

 

In this study we exploit UAV data for estimating Fractional Vegetation Cover (FVC) of maize crop at the early stages of the growing 

season. UAV survey with a MicaSense RedEdge multispectral sensor was carried out on July 13th, 2017 over a maize field in Italy; 

simultaneous RGB in situ pictures were collected to build a reference dataset of FVC over 15 ESU (Elementary Sampling Units) 

distributed over the field under investigation. The approach proposed for classification of UAV data is based on local contrast 

enhancement techniques applied to a vegetation index (NDVI-Normalized Difference Vegetation Index) to capture signal from small 

plants at the early development stage. The output fc map is obtained over grid cells over 70 x 70 cm size. The approach proposed 

here, based on contextual analysis, reduced artefacts due to illumination conditions by better enhancing signal from vegetation 

compared to, for example, simple band combination such as vegetation index alone (e.g. NDVI). Validation accomplished by a point 

comparison between estimated (from UAV) and in situ measured FVC values provided R2 = 0.73 and RMSE = 6%. 

 

 

                                                                 
*  Corresponding author 

 

 

 

1. INTRODUCTION 

 

1.1 Background 

 

Fractional Vegetation Cover (FVC) or Vegetation Fraction 

(VF) is defined as the ratio of the vertical projected area of 

vegetation canopy to the reference ground surface, expressed as 

fraction or percent (Purevdorj et al. 1998; Gitelson et al. 2002). 

FVC is an important variable related to many biophysical 

features, such as plant density, phenology, Leaf Area Index 

(LAI), yield and fraction of Absorbed Photosynthetically-Active 

Radiation (fAPAR) (Steven et al. 1986; Carlson et al. 1994; 

Owen et al. 1998); thus, it is frequently used to study and 

monitor ecosystem balance, soil erosion, climate change, 

vegetation degradation and desertification (Zribi et al., 2003; 

Lin and Qi, 2004; Jiapaer, Chen, and Bao, 2011). Therefore, the 

accurate estimation of FVC would have a significant impact on 

agricultural monitoring, ecological study and climate change 

analysis (Torres-Sánchez et al., 2014; Li and Zhang, 2015). In 

precision agriculture (PA), the assessment of FVC within a crop 

field is a first and crucial step, in order to address further 

objectives such as the detection and mapping of weeds (Torres-

Sánchez et al., 2014; Stroppiana et al., 2018). 

 

In this context, remote sensing (RS) techniques represent a 

valuable source of information to assess FVC. Advantages of 

RS technology include the synoptic view of the surface and the 

reduced cost per unit of area covered (Matese et al., 2015) 

compared to field surveys. Spaceborne and airborne platforms 

(also identified as high-altitude remote sensing instruments) 

have been the major source of observations for the optical 

properties of vegetation (e.g. Eerens et al., 2014; Pan et al., 

2015). Despite the advantages offered by these systems, there 

are some limitations for PA applications, such as timeliness of 

the acquisitions, frequency and spatial resolution (Pinter et al., 

2003), which can be too coarse for most of the fields in Italian 

family-owned farms. The recent introduction of a new platform 

for remote acquisition, Unmanned Aerial Vehicles (UAV), can 

overcome some of such limitations. Due to their flexibility, 

these low altitude systems can be considered complementary to 

high-altitude systems or even an alternative source of 

information over small area coverage (Huang et al., 2013). 

UAV advantages includes several features, such as i) the lack of 

an on-board pilot, ii) the ability to change flight altitude or to 

adjust the focal length, iii) the ability to fly on cloudy weather 

conditions, iv) the flexibility to mount different sensors. These 

features allow to reduce costs of vehicles and sensors, to acquire 

ultra-high spatial resolutions (pixels with GSD of few 

centimetres or even millimetres), to enhance and optimize 

revisiting times by scheduling acquisitions with farmers 

(Klemas 2015), thus helping to catch critical stages during the 

penological cycle of rapid growing crops (Hunt et al., 2010). 

 

In recent years, UAV have been successfully used in PA 

objectives. These includes crop status and vigor, stress and 

disease conditions (Zarco-Tejada, González-Dugo, and Berni, 

2012), crop bio-physical parameters such as canopy cover, Leaf 

Area Index, chlorophyll and nitrogen content (Torres-Sánchez 

et al., 2014), invasive weed presence (Peña et al., 2013) and 

potential yield (Stroppiana et al., 2015). Among FVC 
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assessment from UAV, there are several studies which include 

monitoring of fractional vegetation cover variation of winter 

wheat (Li et al., 2012), multi-temporal mapping of the 

vegetation fraction in early-season wheat fields (Torres-Sánchez 

et al., 2014), estimates of fractional vegetation cover in alpine 

grassland (Chen et al., 2016), estimation of vegetation fraction 

in oilseed rape (Fang et al., 2016) and multi-temporal 

monitoring of soybean vegetation fraction (Yun et al., 2016). 

 

1.2 Objectives 

 

The main objective of this study is to investigate UAV data on a 

real case scenario, cereal crop in a 56 ha field, in order to 

collect swift spatial explicit information on plant presence at 

early maize phenological stage as a support for tactic and 

strategic site specific agro-management. Therefore, we have two 

main objectives: i) to demonstrate the feasibility of UAV data 

for PA applications and ii) define an appropriate 

methodological workflow to efficiently process UAV data. 

 

Regarding the first aim, the application in PA framework, the 

detection of vegetation presence and density (FVC) is 

fundamental for i) the provision of an indicator of germination 

efficiency and weed presence for tactic within-season 

management fertilisation and weed control and ii) collection of 

indirect mapping of soil properties (texture and fertility) for 

strategic planning such as smart scouting of soil sampling and 

to define future soil management practises. 

 

Regarding the exploitation of UAV data in real case conditions 

characterised over a very wide field, we wanted to investigate 

and address problems related to different illumination condition 

in the aerial imagery. This aspect is fundamental in order to 

automatize plant presence detection minimizing errors due to 

sensor characteristics and changes in reflectance due to 

instrument, target and illumination geometry changes and 

artefacts generated in the ortho-mosaic production exploiting 

Structure From Motion (SFM). 

 

 

2. STUDY SITE AND DATA ACQUISITION 

 

2.1 Study area and crop conditions 

 

The experiment took place in the commercial farm Bonifiche 

Ferraresi S.p.A. (BF) in its estate of Jolanda di Savoia (Ferrara). 

BF is the largest Italian farm, owing a whole of 6500 ha, in 

different estates, mainly located in three provinces in Italy: 

Ferrara (North-Eastern Italy), Arezzo (Central Italy) and 

Oristano (Sardinia). In the different estates, several crops are 

cultivated: rice, maize, durum and soft wheat, barley, sugar 

beet, alfalfa, soybean, horticultural plants, medicinal plants and 

fruit, which are distributed throughout the national territory. BF 

is interested in the development and application of innovative 

farming techniques, including PA, and holds a lot of geospatial 

data (e.g. soil maps, soil resistivity, yield maps), it hosted CNR 

experimental activities at Jolanda di Savoia estate (11.95210°E, 

44.85920°N), which is a farm of 3800 ha (fig.1). 

 

The site is located in a flat reclaimed land, near the river Po 

delta, around 4m below the sea level, characterised by very 

variable soil conditions, with several palaeochannels. The field 

under investigation, coded 467 (highlighted in fig.1), of around 

~ 56 ha, was cultivated according to the farm practice and sown 

as second crop cycle on June 24th, 2017, with silage maize. 

 

The soil and resistivity maps are shown in Figure 2, the majority 

of the field is characterized by clay soils (namely Forcello, and 

coded FOR1 in Figure 2a) which are rich in organic substance, 

with thin peaty levels (10 cm maximum) and sometimes 

presenting small calcium and chalk carbonate concretions.  

 

 

Figure 1. Jolanda di Savoia estate, the field of experiment (ID 

467) is highlighted in yellow. 

 

The other parts of the field are characterized by: FOR2, which 

is the same type of soil but poorly drained (this is the reason 

why, as shown in fig. 1 and 2, the field is subdivided into 

parcels by drains, see also the resistivity map Figure 2b); and 

only a small portion by a more silty soil related to channels 

(MSF1), but which is out of the overflight coverage (only the 

northern part of the field, see Figure 6).  

 

 a)   

 b)  

Figure 2. a) Soil map of field 467: soil codes are explained in 

the text. b) Resistivity map of field 467; it is visible, more in 

detail as respect to the soil map, the poorly drainage soil 

conditions (low resistivity depicted in red). 

 

At the time of surveying, maize crop conditions (i.e. crop 

establishment, density and weed presence) were characterized 

by a high rate of patchiness as mainly due to: the soil moisture 

variability and the time lapse in management due to the size of 

the field, in fact, sowing 56 ha took 4-5 days. On the day of the 

survey, within the field 467, maize phenology stages varied 

respectively from 1st leaf stage, i.e BBCH 11 (Lancashire et al., 

1991), to 4th leaf unfolded stage (BBCH=14), with a maximum 

plant height of about 25 cm. The range of crop conditions is 

depicted in Figure 3. 
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2.2 Data acquisition 

 

On July 13rd, 2017 in situ observations of crop cover and 

density were collected over a set of 15 elementary sample units 

(ESU) covering an area of 1 m2 each to fully characterize the 

variability of crop conditions (Figure 3) of field 467. During 

field survey each ESU was observed by four adjacent photos 

taken at nadir over the crop canopy with a SONY cybershot 

DSC HX20C RGB camera. Each photo embraced an area of 0.5 

m2 identified on the ground by a square wooden frame 

positioned over the maize crop and included in the camera shot 

(see example in Figure 3), to be used as reference data. 

 

 

Figure 3. a) Example of in situ measurement of FVC by taking 

four photos (yellow dots) at each ESU identified by the central 

coordinates (blu square); b) photo taken at one ESU with 

reference wooden frame. 

 

UAV data were acquired on the same day of field survey over 

field 467 with V-Tail prototypal fixed-wing RPAS at around 75 

m above ground level, with a GSD of 7 cm. The vehicle, X-

UAV Talon assembled and modified by IRPI-CNR, mounting a 

multi-spectral MicaSense RedEdge sensor. The sensor acquires 

images in five spectral bands: blue, green, red, red edge, and 

Near Infrared (NIR). The sensor was calibrated using a 

reference panel before and after the images acquisition. A flight 

planner defined the UAV trajectory and the acquisition of the 

multi-spectral sensor was temporized, with a new image every 5 

seconds. 

 

The overflight did not fully cover the field extension, since the 

weather conditions where suddenly changing during the day, 

causing important changes in radiometry. 

 

 

3. METHODS 

 

3.1 Classification of in situ RGB photos 

 

In situ RGB photos were classified by a supervised approach 

with training pixels collected by expert photointerpretation. We 

defined two classes (soil and vegetation) and applied a Support 

Vector Machine (SVM) classification algorithm in HARRIS 

ENVI® software (Figure 4). The two-class thematic output map 

allowed us to estimate the crop fractional vegetation cover 

(FVC [%]) inside each sample area of 0.5 m2 identified visually 

by the wooden frame. 

 

The FVC value assigned to ESU is the average of the FVC s 

estimated from the set of four RGB photos. In situ FVC at the 

15 ESU varied in a range from 0.0 (soil) to 0.30 (most vegetated 

areas). This dataset was used as a reference data for comparison 

with FVC estimated from UAV multispectral imagery. 

 

 

Figure 4. a) In situ RGB photo and b) SVM classification for 

the estimation of ground fractional vegetation cover; only pixels 

inside the 0.5 m2 frame are shown. 

 

3.2 UAV imagery processing 

 

UAV images were processed with Pix4D software for ortho-

projection to obtain the ortho-mosaic in the five spectral bands 

of the MicaSense RedEdge sensor (Figure 1) exploiting SFM 

technique and obtaining a GSD of 7 cm. PiX4D has a dedicated 

processing chain developed for multi-spectral datasets. The 

software is able to acquire both images taken during the flight 

and the bands calibration images. A set of spectral indices was 

computed from the multi-spectral image: NDVI (Normalized 

Difference Vegetation Index), RGRI (Red Green Ratio Index), 

NDRE (Normalized Difference Red Edge), SAVI (Soil 

Adjusted Vegetation Index), NDRI (Normalized Difference 

Red/Green Redness Index). Preliminary analysis of correlation 

between the vegetation indices and in situ FVC pointed out that 

NDVI was the most suitable index in our case study. This is an 

expected result because NDVI shows a strong sensitivity at 

early crop stages due to the contrast between background (soil) 

and plant presence. 

 

3.3 Estimation of fractional vegetation cover 

 

A fractional vegetation cover map was obtained from UAV 

ortho-mosaic by exploiting an approach based on the 

enhancement of the local contrast in NDVI images. 

 

A median filter was used over a moving window (Kernel) to 

enhance contrast of NDVI in regions where maize plants are 

smaller than the average; these regions in fact would not be 

captured with a simple thresholding step with a global threshold 

values over the image. 

Hence, the map, representing the spatial distribution of crop 

FVC was computed with the following steps: 

 

1. Resampling NDVI to 70 cm spatial resolution (10 x 10 

image pixel grid cells); 

2. Computing median filter from full resolution NDVI 

with a kernel size of 21 x 21 image pixels; 

3. Differencing the two layers described above to enhance 

local contrast (NDVI-local filter); 

4. Thresholding the difference layer so that vegetated 

pixels are those with difference ≥ 0.05; 

5. Computing fractional vegetation cover (FVC) as the 

proportion of vegetated pixels over total number of 

pixels within each 10 x 10 grid cell. 

 

The final output FVC map is therefore the fractional vegetation 

cover at a spatial resolution of 70 cm; it ranges in 0-1 over each 

grid cell.  
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Figure 5. The sequence of steps listed in 3.3 for two ESU: RGB 

images over the area (column 1), overlay of full resolution 

pixels with NDVI>0.1 (column 2), NDVI median filter output 

(column 3), difference between NDVI and median filter 

(column 4), pixels that satisfy the conditions > 0.05 (Column 5) 

and FVC map aggregated over 10x10 pixels cell size (~70 cm) 

(Column 6). 

 

3.4 Validation 

 

The accuracy of the FVC map was assessed by comparison with 

in situ FVC estimates obtained at the location of the 15 ESU; 

the centre of each ESU was used to locate over the aggregated 

FVC map. Estimated and in situ FVC values were compared at 

each ESU and regression analysis metrics were computed to 

quantify the difference between the two values. 

 

 

4. RESULTS 

 

4.1 Multi-spectral ortho-mosaic 

 

The multi-spectral ortho-mosaic is shown in Figure 6. The 

image highlights the variability of crop conditions within the 

portion of the field overflown by the UAV survey. In the image 

change in reflectance are due to both soil properties (see 

resistivity anomaly in Figure 2b) and residual artefacts due to 

illumination conditions (sun illumination varying during the 

overflight). These artefacts are not compensated during pre-

processing and mosaicking. Indeed, processing of UAV imagery 

poses several issues which are still unsolved by traditional 

photogrammetric processing approaches (Whitehead and 

Hugenholtz, 2014). 

 

 

Figure 6. Multispectral ortho-mosaic displayed as RGB false 

colour composite (R=NIR, G=red, B=green) with overlaid ESU 

positions (white dots) and field borders (cyan polygon). 

 

Figure 7 shows profiles in the five spectral bands of the UAV 

multi-spectral image over the ESUs. Spectral profiles were 

extracted by considering a circular Region Of Interest (ROI) 

centred at the ESU location and by averaging the pixels values 

for each band. The radius of the ROI was varied in the range 

[0.1 – 1.0 m] to analyse the variability of the output spectral 

profile as a function of the portion of image extracted for 

computing average reflectance; variability is due to spatial 

changes and heterogeneity of the target surface. In the figure 

greater changes are observed over ESU where crop was more 

developed (2, 3, 4); by changing ROI size a more variable 

proportions of vegetated and soil pixels fall within the ROI. 

 

 

Figure 7. Spectral profiles in the five bands of the RedEdge 

sensor over the ESU (panels) as a function of the ROI size used 

for extracting and averaging reflectance. 

 

4.2 Fractional vegetation cover map 

 

The FVC map obtained following the procedure described in 

3.3 is shown in Figure 8.d; the output product is zoomed in over 

the portion of the maize field where ESU were located. 

Theoretically, fractional cover ranges between 0.0 and 1.0 

showing the proportion of vegetated pixels within each cell (~ 

70x70 cm). Since the growing season was at the early stages, 

actual FVC values were generally below 0.4 with a clear 

difference between the eastern and western portions of the field. 

Indeed, these two regions of the field were sown on different 

dates: the left (western) part was sown earlier compared to the 

right (eastern) as confirmed by greater values of FVC (green 

tones in the map). Greater FVC values were observed along the 

drain channels were natural vegetation grows more vigorously. 

 

 

Figure 8. Results over the portion of the field were ESUs are 

located: a) Multispectral ortho-mosaic displayed as RGB false 

colour composite (R=NIR, G=red, B=green); b) soil resistivity; 

c) NDVI; d) FVC map. 

 

In the same figure we compared FVC map (panel d) with NDVI 

(panel c), soil resistivity map (panel b) and false colour 

composite of the UAV multi-spectral image (panel a). The 

NDVI layer shows spatial patterns due to illumination artefacts 

and soil characteristics, which strongly influence reflectance in 

the UAV ortho-mosaic; an evident example is the western part 
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of the image (maize sown earlier) where the output FVC 

product displays more homogeneous results compared to NDVI. 

Finally, looking at Figure 8a and Figure 8b and comparing the 

UAV ortho-mosaic reflectance with the spatial variability of soil 

resistivity better highlights patterns due to changes in soil 

characteristics. Spatial variability of soil characteristics in fact is 

a key factor influencing crop development. Therefore, 

processing based on image enhancement produces FVC 

estimates consistent with crop conditions observed in the field 

and can be used to extract information (vegetation presence and 

density related to sowing date, plant mortality and soil fertility) 

useful for field agronomic management. 

 

4.3 Validation 

 

Validation carried out at each ESU showed a suitable 

agreement, with R2 = 0.73 and RMSE = 6% (Figure 9). The best 

agreement was obtained over the sample units with the lowest 

crop density (fractional vegetation cover). 

 

 

Figure 9. Results of the validation of fractional vegetation cover 

maps over the 15 ESU: estimated and actual FVC values for 

each ESU (a) and regression between estimated and in situ FVC 

values (b). 

 

This output information could be input layer for, by example, 

Variable Rate Technology fertilization in the framework of PA 

field management practises. Resampling over larger cell 

proposed here is suitable for enhancing the signal of less 

developed plants and reducing image noise. In a framework of 

operational VRT applications, hyper-spatial information 

produced by full resolution UAV imagery could be redundant 

when used as input at the scale of the Management Unit Zones 

(MUZ). 

 

 

5. CONCLUSIONS 

 

A fractional cover maps over a maize field was obtained from 

multi-spectral UAV image. UAV survey was carried out at the 

early stages of the crop growing season for applications of VRT 

technologies for crop management. UAV acquisitions over 

areas require multiple overpasses and the reconstruction of 

ortho-mosaic from different frames, which are acquired with 

different instrument, target and illumination geometry. This 

condition results problematic showing artefacts in the image 

that could reduce the full exploitation of spectral information 

from multi-spectral data. 

 

The approach applied for deriving FVC map is based on local 

contrast enhancement techniques applied to NDVI (Normalized 

Difference Vegetation Index) both to capture signal also from 

small plants and to reduce the false patterns due to other factors 

(e.g. illumination and mosaicking). The variability of crop 

conditions observed and measured during the synchronous field 

campaign was confirmed by the output FVC map. Accuracy 

evaluated by comparison with in situ FVC values derived from 

supervised classification of nadir RGB pictures shows 

satisfactory results (R2 = 0.73 and RMSE = 6%). 
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