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ABSTRACT 
 
Open pit mines localized in high mountains are probably one of the most complex environments for Structure-From-Motion (SfM) 
based photogrammetry. The case study presented in this paper refers to the realization of a detailed topographic mapping in the 
Torano marble basin (Apuan Alps, Italy) which needed, after decades of excavation activity, a new topographic survey. 
Given the requested very high resolution, the time constraints and safety-related problems, a photogrammetric approach by a fixed-
wing Unmanned Aerial Vehicle (UAV) was chosen to carry out thesurvey of the basin. In addition, given the morphological 
complexity of the area, characterized by extreme steep slopes more than hundreds of meters high, and the necessity to minimize the 
fieldwork without sacrificing the work quality, an UAV equipped with a L1/L2 Network Real Time Kinematic (NRTK) Global 
Navigation Satellite System (GNSS) was used. 
The scope of this work is to compare the accuracy of UAV derived 3D photogrammetric models realized with different approaches: 
by using traditional Ground Control Points (GCPs), by using the on-board Network Real Time Kinematic system for camera position 
detection, and a mix of both. At the end, we tested the quality of the models to verify the reachable levels of accuracy. 
 
 

1. INTRODUCION 

 
This paper analyses the accuracy of a bundle-adjustment 
photogrammetric process which uses photos from fixed-wing 
UAV flights over a morphological very complex mountain area. 
The work is part of a bigger project aimed to the creation of an 
updated topographic map, at a scale of 1:1,000, for an area more 
than 200 ha wide in the Torano marble basin (Carrara, Italy). 
The new topographic map was created from: a) the extraction of 
contour lines from the dense 3D point cloud, b) the editing of 
contour lines within a 3D GIS environment, c) the drawing in 
3D of the remaining topographic features basing on the 
interpretation of the orthophotomosaic. Both, the dense point 
cloud and the orthophotomosaic, were generated by processing 
the digital images acquired by UAV flights and their bundle-
adjustment (topic of this work).   
The Torano basin is characterized by high morphological 
complexity (Figure 1), consequence of the geology and the long 
history of the mining site attributable to the Roman Empire age.  
As base for the new topography, the dense point cloud and the 
high resolution orthophotomosaic were used as described in 
papers from Mancini et al. (2013), Gonçalves and Henriques 
(2015) and Westoby at al. (2012). Data was generated starting 
from digital images acquired by using a GNSS-NRTK equipped 
UAV. The work here presented focuses on the acquisition 
phase, the alignment of frames and their orientation through 
bundle-adjustment and SfM algorithms (Fonstad et al., 2013, 
Snavely et al., 2008; Ullman, 1979). 
The analysis of the final model spatial accuracy was carried out 
by using different approaches. 
 

 
Figure 1. Panoramic view from the top of the Torano Basin; 
from the highest point to the main access road, the altitude 

difference is about 1,000 m. 
 
1.1 Geographical and geological overview 

The Torano basin is located in the Apuan Alps (Tuscany, Italy), 
the most important marble extraction area of Europe with a 
production of about 1 million tons/years (Salvini et al., 2014).  
The study area is located in the north-western part of the 
Carrara syncline, a pluri-kilometric isoclinal fold formed during 
the Tertiary orogenesis under greenschist conditions 
(Carmignani and Kligfield, 1990; Molli, 2008; Molli and 
Meccheri, 2012). 
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2. INSTRUMENTS 

2.1 UAV 

The UAV used for the survey is an eBee plus RTK fixed-wing 
vehicle, produced by SenseFly (Parrot Group, Figure 2).The 
drone is made of foam, carbon and other composite parts with a 
nominal take-off weight of 1.1 kg. The UAV can flight between 
40 and 110 km/h and can resist to a 12 m/s wind. Three cells on 
board LiPo battery allow a maximum flight time of about 59 
minutes. The remote control of the UAV is composed by a 
ground modem operating at 2.4 Ghz allowing communications 
between UAV and Windows based PC that operates as ground 
station through the eMotion 3 software. The software is also 
used as bridge between UAV and real-time GNSS network 
through the mobile internet access. For this project the 
NETGEO Network VRS was used (Topcon Positioning Italy 
s.r.l.). 
 

 
Figure 2. The eBee plus RTK fixed-wing UAV used in this 
work. 
 
2.2 Imaging sensor 

A S.O.D.A. sensor was installed on the eBee payload bay. 
S.O.D.A. is the acronym of Sensor Optimised for Drone 
Applications, a photogrammetric sensor specifically developed 
for small-commercial UAV operations. It is based on 1-inch 20-
megapixel RGB global shutter sensor (Table 1). 
 

Sensor 1” 
Lens 10.6 mm f/2.8 
Resolution 5472 x 3648 
Pixel size 2.4 µm  
Ration 3:2 
Image format JPEG, DNG 

Table 1. Main specifications of the used S.O.D.A. camera. 

 
Due to the unavailability of the sensor’s calibration certificate 
and with the aim of eliminating a possible variable in the 
process of accuracy evaluation, the interior orientation of the 
S.O.D.A. was initially estimated with the camera self-
calibration method (Fraser, 1997; Zhang, 2000; Remondino et 
al, 2006; Agisoft, 2008).  
The calibration parameters (Table 2), calculated thanks to a 
reliable ground control points spatial distribution, were saved 
and utilised in the processing stage described in Paragraph 3.3. 

Despite this, we have noticed that, even not fixing the camera 
calibration data, the bundle-adjustment step shows an extreme 
limited variation of the interior orientation parameters. 
 
Parameter Value Error 
F   4399.57 0.027 
Cx   41.3461 0.021 
Cy   19.1871 0.019 
B1   1.77081 0.0062 
B2   -0.159396 0.006 
K1   0.0620122 6.5e-005 
K2   -0.420381 0.00046 
K3   0.929244 0.0013 
K4   -0.60415 0.0012 
P1   0.00293547 1.8e-006 
P2   0.00077971 1.5e-006 

Table 2. Interior orientation parameters of the used S.O.D.A. 
sensor as calculated through the self-calibration method. 

 
Figure 3 shows the distortion plot, based on self-calibration 
parameters, representing the image of residuals for the used 
S.O.D.A. sensor. 

 
Figure 3. Image of residuals for the used S.O.D.A. sensor. 

 

2.3 Onboard GNSS 

The onboard GNSS based on a double-frequency 
GPS/GLONASS receiver operating at 20 Hz, which acquires 
the NRTK data through the standard transmission protocol 
RTCM 3.x.  
The internet mobile signal was always good during the survey 
but, in order to avoid signal disconnection (due to complex 
morphologies or temporary interferences), a GNSS reference 
station (Leica GS15 system) was used during the flight. The 
reference station allowed the post-processing of UAV RINEX 
data for camera positions acquired during possible NRTK 
down-times. 
 

3. DATA ACQUISITION AND PROCESSING 

 
3.1 Flight plan and ground points distribution 

Due to the morphological complexity of the area, the UAV 
flight plans were heavily conditioned by the elevation 
differences within the basin, and could not follow a traditional 
planar approach; the relevant vertical differences between 
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b) A small number of measured topographic points was used 
as GCPs and the remaining as CPs. The bundle-adjustment 
was based on camera position coordinates and GCPs; 

c) Topographic points were used as in the case of a traditional 
not-NRTK UAV survey; the bundle-adjustment was based 
on camera position coordinates and GCPs; 

d) Topographic points were used as in the case of a traditional 
not-NRTK UAV survey; the bundle-adjustment was based 
only on GCPs. 

 
Tables 3 and 4 report the Root Mean Square Errors (RMSEs) of 
camera positions, GCPs and CPs in the different configurations 
(i.e. a, b, c and d). 
 

Conf. 
Nr. of 
used 

GCPs  

Nr. of 
used 
CPs  

Use of 
camera 

positions 

GCP 
XY 

RMSE 
(cm) 

CP XY 
RMSE 
(cm) 

Cam. 
XY 

RMSE 
(cm) 

a 0 64 Yes - 83 11.6 
b 14 50 Yes 12 42 18.8 
b 24 40 Yes 7.7 30.48 22.15 
b 35 29 Yes 6.31 28.62 23.17 
c 49 15 Yes 6.06 15.58 25.26 
d 14 50 No 0.5 7.51 89.2 
d 24 40 No 0.6 7.08 89.8 
d 35 29 No 0.92 5.43 86.4 
d 49 15 No 1.18 4 86 

Table 3. Planimetric XY RMSEs (cm) in different bundle-
adjustment configurations. 

 

Conf. 
Nr. of 
used 

GCPs  

Nr. of 
used 
CPs  

Use of 
camera 

positions 

GCP Z 
RMSE 
(cm) 

CP Z 
RMSE 
(cm) 

Cam. Z 
RMSE 
(cm) 

a 0 64 Yes - 188 16.82 
b 14 50 Yes 64 152 22.27 
b 24 40 Yes 46.63 92.91 31.85 
b 35 29 Yes 37.97 84.88 34.64 
c 49 15 Yes 43.11 85.4 38.67 
d 14 50 No 1.95 12.52 176.2 
d 24 40 No 3.42 8.99 175 
d 35 29 No 2.83 9.35 177.4 
d 49 15 No 2 5.4 177 

Table 4. Altimetric Z RMSEs(cm) in different bundle-
adjustment configurations. 

 

5. DISCUSSION AND CONCLUSIONS 

UAV NRTK system, together with LiDAR derived DEM, 
resulted very useful for navigation purposes and allowed 
performing complex flight plans, necessary for obtaining the 
expected accurate outputs. 
The high accuracy camera positions stored in the exif metadata 
format, allowed completing the alignment phase of the SfM 
process (in reference preselection modality) of 2071 images in 2 
hours with a Dual Xeon Workstation, 128 Gigabyte RAM and 2 
GPU. 
Table 3 and 4 show the calculated results in different bundle-
adjustment configurations: the accuracy level was analysed on 
the CPs which were not used in bundle block adjustment but 
only as assessment points. Indeed, the relevant information for 
this work are the differences between the coordinates measured 
from the obtained block model and the real coordinates 
measured in the field trough the GNSS topographic survey. 
In the first approach (a) the resultant XY RMSE was equal to 83 
cm, while the RMSE on the Z coordinate was 188 cm. The use 
of a certain number of GCPs (approach “b”, 14 GCPs and 50 
CPs) results in a lower error, with a planimetric RMSE of 42 cm 

and an RMSE of 152 cm on the Z coordinate. Passing to 49 
GCPs and 15 CPs (approach “c”) the calculated RMSE on XY 
coordinates was equal to 15.58 cm, but on Z the RMSE 
remained still high (85.4 cm). The exclusion of camera 
coordinates from the bundle adjustment (approach “d”) resulted 
in a better accuracy with a planimetric RMSE of 4 cm and a 
RMSE of 5.4 cm on the Z coordinate (i.e. with 49 GCPs and 15 
CPs configuration). 
Anyway, with reference to the approach “d”, the RMSE on CPs 
resulted quite low even with a small number of GCPs (only 14 
well distributed points); in particular, the RMSEs resulted of 
7.51 cm on XY and 12.51 on Z coordinate.  
These errors, related to the CPs residuals, can be considered 
acceptable for the creation of a 3D model to be used for 
cartographic aims at a scale of 1:1,000. The errors in elevation, 
which result from models generated following the approach “a” 
(lower than 2m) are acceptable only for the production 
of1:10,000 topographic maps. 
To conclude, despite the technological progresses with SfM and 
NRTK on-board systems, the results of this research shows the 
necessity of measuring a homogeneous distribution of ground 
points in order to produce large-scale cartography. This is 
particularly true in a very complex morphological environment 
such as the mining area used for this test. 
In addition, for a better understanding of the influence of 
camera position coordinates (recorded through a GNSS-NRTK 
receiver) on bundle block adjustment, a more detailed analysis 
may be beneficial. For example, a segmented approach, with a 
flight by flight analysis in subset areas could be useful to 
investigate the influence of the satellites signal degradation or 
the lack of real-time connection due to mobile internet signals 
instability, especially in the most depressed part of the site.  
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