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ABSTRACT: 

 

Unmanned Aerial Vehicles (UAVs) are increasingly used, and open new opportunities, in agriculture and phenotyping because of the 

flexible data acquisition. In this study the potential of ultra-high spatially resolved UAV image data was investigated to quantify 

lodging percentage, lodging development and lodging severity of barley using Structure from Motion techniques. The term lodging is 

defined as the permanent displacement of a plant from the upright position. Traditionally lodging quantification is based on 

observations that need, and vary with observers in the field. An objective threshold approach was proposed in this study to improve 

the accuracy in lodging determination. Across breeding trials, manual reference measurements and UAV based lodging percentage 

showed a very high correlation (R² = 0.96). In addition, the multi-temporal lodging percentage development was used to estimate the 

recovery rate and to determine the influence of different lodging events. Based on the parameter lodging percentage an approach was 

developed that allowed the assessment of lodging severity, an information that is important to estimate the yield impairment. Lodging 

severity can be used for insurance applications, precision farming and breeder research. This trait, together with differentiated recovery 

are novel traits next to lodging severity that will aid the selection for genetic lines. 

 

 

1. INTRODUCTION 

The increasing digitalization in agriculture is caused by the rapid 

development in sensor technology and data processing 

(Atzberger, 2013; Siegmann and Jarmer, 2015). The use of 

unmanned aerial vehicles (UAVs) can help to advance and 

accelerate this process to phenotype plants in short time periods 

(Burkart et al., 2017; Gómez-Candón et al., 2014; Zhang and 

Kovacs, 2012).The versatile applications of UAVs in agriculture 

and other areas are caused by their low costs, simple handling 

and high flexibility (Eling et al., 2015; Grenzdörffer et al., 2008; 

Hodgson et al., 2016; Mancini et al., 2013). The possibility to 

acquire ultra-high resolution spatial UAV data in comparison to 

satellite and airborne systems, however, is a basic requirement to 

assess the three-dimensional (3D) canopy structure of crops using 

feature matching and Structure from Motion (SfM) techniques 

(Colomina and Molina, 2014; Dandois and Ellis, 2013; Turner et 

al., 2012). The 3D canopy structure acquired with a red, green 

and blue (RGB) camera was applied to assess three plant traits 

(lodging percentage, lodging development, lodging severity). 

 

To deviate the canopy height from the canopy structure a non-

vegetated ground model is needed. This ground model 

determines the top soil surface and is normally acquired via UAV 

overflight (Bendig et al., 2013; Chu et al., 2017). 

The potential of UAV derived canopy height were already 

evaluated in several studies (Anthony et al., 2014; De Souza et 

al., 2017; Stanton et al., 2017), in detail for multi-temporal 

growth curve generation (Chu et al., 2017; Holman et al., 2016) 

or biomass estimation (Bendig et al., 2015, 2014). Compared to 

the classical plant height measurements collected with a 

measuring ruler at a specific position, the UAV approach allows 

to derive the height of the complete canopy (Aasen et al., 2015; 

Bendig, 2015). Thus, the UAV based canopy height implied 

various height information in contrast to the plant height 

measurement in the field with a ruler, where usually only one 

measurement per plant is possible.  

The canopy height can additionally be used to identify lodge 

areas. Lodging is defined as the permanent displacement of a 

plant from the upright position (Berry and Spink, 2012; 

Rajapaksa et al., 2018) and leads to qualitative and quantitative 

yield losses of up to 45 % (Berry and Spink, 2012; Peng et al., 

2014; Pinthus, 1974; Weibel and Pendleton, 1964). The losses 

are mainly as a result of the lodging severity and the 

developmental stage of occurrence (Berry et al., 2004; Fischer 

and Stapper, 1987; Briggs, 1990). Extreme weather conditions 

like heavy rain, storm, excessive nitrogen and disease can cause 

lodging. This results in a growing need to select for genetic lines 

with greater lodging resistance (Pinthus, 1974). Using UAV data 

for the spatial assessment of lodging is a very suitable method to 

automate the detection of lodging and replace laborious and 

subjective ground data collection. Already Susko et al. (2018) 

tried to assess crop lodging with a field camera track system. 

Additionally, Yang et al. (2015) used polarimetric index from 

RADARSAT-2 data for monitoring wheat lodging. Liu et al. 

(2018) further used visible and thermal infrared images derived 

from UAV for rice lodging estimation. Also Murakami et al. 

(2012) quantified lodging in buckwheat using the 3D canopy 

structure. In this study, however, the area of lodging was 

determined by using a threshold at which canopy height lodging 

occurred, but the application of those thresholds applied in 

different studies (Bendig, 2015; Chapman et al., 2014; Yang et 

al., 2017) were defined by subjective inspections rather than by 

mathematical approaches. The main goal of the presented study 

is to show a new method using an objective threshold approach 

that enables the assessment of the lodging percentage without 

adjusted threshold and subjective decisions. 

Additionally, the approach can be used to determine the lodging 

development, the recovery rate of crops and evaluate the 

influence of different lodging events based on a multi-temporal 

consideration of lodging percentage. Navabi et al. (2006) already 

demonstrated on over 140 different wheat genotypes that the 

extent of recovery capability varied among genotypes. Similar 

results were found by Briggs (1990) for barley.  
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In general, the lodging percentage parameter is only a decision 

between presence and absence of lodging. However, the crop 

canopies can be affected by different lodging severities resulting 

in different amounts of yield losses. Different studies already 

investigated the influence of lodging severity related on yield 

(Berry and Spink, 2012; Fischer and Stapper, 1987; Michael, 

1998; Murakami et al., 2012). Ground data based on visual 

lodging scores are generally insufficient in accuracy, efficiency, 

and objectivity (Murakami et al., 2012; Simko and Piepho, 2011). 

Until now, only Chu et al. (2017) tried to assess the lodging 

severity of corn field by quantifying the number of lodged plants. 

However, due to the different plant structure and plant density of 

corn, this approach cannot be applied for cereal crops. Therefore, 

in this study, a new method is presented that allows to assess the 

lodging severity of barley using information on how strong the 

canopy is affected by lodging based on the canopy height 

variation derived from UAV images. 

 

 

2. MATERIALS AND DATA 

2.1 Study Area  

The study was conducted at Campus Klein-Altendorf agricultural 

research station of the university of Bonn (50°37ʹN, 6°59ʹE, 

altitude over sea level 186 m), Germany. The study site was an 

experimental setup consisting of several small breeder plots, each 

2.62 × 3 m in size. The layout included three different summer 

barley (Hordeum vulgare) cultivars with two different sowing 

densities and six repetitions. The codes explained in Table 1 

represents the relevant genotypes for the study. The high density 

(300 seeds m−2) reflected the common sowing density in 

Germany. The lower density consisted of 150 seeds m−2. The 

selected barley cultivars varied in canopy characteristics and 

plant height. Sowing was done on 9th April, 2016. 

 

Genotype 

Code 

Genotype Name 

1 HOR 21770 

2 HOR 9707 

3 HOR 3939 

Table 1. Relevant lodge genotypes for study 

 

2.2 Weather Conditions 

The seasonal development of barley was influenced by 

environmental conditions recorded at a weather station in situ 

Campus-Klein-Altendorf. The heavy rain events (Figure 2) 

especially in June and July influenced the plant development and 

resulted in a high amount of lodged plants. 

Figure 2. Daily precipitation (mm) between 40 days after 

sowing to 101 days after sowing 

 

2.3 UAV Platform and Sensor 

For data acquisition the Falcon-8 UAV (Ascending Technologies 

GmbH, Krailing, Deutschland) and a Sony (Sony Europe 

Limited, Weybridge, Surrey, UK) Alpha 6000 RGB camera (24 

megapixel, 6000 × 4000 pixels) were used. The RGB camera was 

integrated on a gimbal (Figure 3). Pitch and roll movement of the 

UAV was balanced and images were acquired according to a 

planned waypoints pattern with 60% cross and 80% forward 

overlap. Depending on the weather conditions the flight duration 

varied between 10-15 mins. 

Figure 3. Sony Alpha 6000 camera attached to the Falcon-8 

Octocopter.  
 

2.4 Data Processing 

Structure from motion (SfM) algorithms were used for 

processing the UAV images in Agisoft Photoscan (Agisoft LLC, 

Saint Petersburg, Russia, version 1.4.1). The algorithms 

identifies corresponding images by feature recognition (Agisoft, 

2018). Via a certain number of overlapping images, it recreates 

their orientation in a spatial three-dimensional (3D) structure 

(Westoby et al., 2012). Details on the SfM algorithm can be 

found in several publications (Agisoft, 2018; Kersten, 2016; 

Lowe, 2004). The primary product of the reconstruction is 3D 

point cloud, the secondary product is a two-dimensional 

orthomosaic (Gómez-Candón et al., 2014). Georeferencing 

(UTM zone 32N) of the point clouds was based on six ground 

control points (GCPs). For extracting the canopy height model 

(CHM) the 3D point cloud has to be subtracted from a ground 

model. The result enables the assessment of canopy height as 

illustrated in Figure 4.   

Figure 4. Canopy height (m) within the canopy height model 

(CHM) with nadir top view  
 

The CHM was rasterized with a spatial resolution of 0.01m. For 

further calculation the maximal height value for each grid cell 

was exported. 
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2.5 Lodging Percentage 

The methodology was focused on a mathematical approach for 

lodging percentage assessment, avoiding adjusted thresholds and 

subjective decisions. As a first step, the maximum canopy height 

(MAXCH) of each genotype were calculated. Related to the 

MAXCH, three different lodging percentage threshold (LPT) 

were used to calculate the lodging percentage; 80% (80LPT), 

70% (70LPT), 60% (60LPT). Finally, the lodging percentage 

were determined 75 days after sowing (DAS) by a query 

(rasterized CHM < LPT) resulting in a binary image with areas 

influenced or not influenced by lodging.  

 

2.6 Lodging Development 

The approach additionally enables the determination of recovery 

rate of crops and evaluates the influence of different lodging 

events based on a multi-temporal consideration of lodging 

percentage. The average lodging percentage was calculated for 

genotypes within experimental setup (Table 1) at five different 

time points (75 DAS, 81 DAS, 89 DAS, 96 DAS, 102 DAS). 

 

2.7 Lodging Severity 

For the second lodging parameter four thresholds related to the 

MAXCH varied from 80 % (80LPT) to 50 % (50LPT) were used 

to calculate the average lodging severity (ALS) according to 

Equation (1). Additionally, the weighted average lodging 

severity (WALS) was calculated (Equal 2). In comparison to 

ALS the parameter WALS additionally weighted areas of the 

canopy affected by lodging differentiated regarding the yield 

impairment. The value range for both formulas varied between 0 

and 100 %.  

 

2.8 Lodging Validation 

The area of lodging were manually determined in additionally 

acquired high-resolution orthomosaic (GSD = 2.3 mm, 75 DAS). 

Due to the very high resolution, the lodging area were easily 

identified. 

 

 

3. RESULTS AND DISCUSSION 

3.1 Lodging Percentage 

In order to identify an ideal threshold for UAV lodging 

percentage assessment, three different LPTs (80LPT, 70LPT, 

60LPT) were compared to the reference measurement. The UAV 

lodging percentage derived from 80LPT let to the lowest 

correlation (R² = 0.892) in this comparison (Figure 5a). It became 

clear that the canopy height deviation between MAXCH and 

80LPT were too small for most of the genotypes. Thus, the 

natural occurring canopy height variation was higher than the 

predefined threshold and lower grown canopy areas were partly 

defined as lodge areas resulting in an overestimation of lodging 

(Figure 5a). The UAV lodging percentage derive from the 70LPT 

had a high correlation (R² = 0.96) and the least root-mean-

squared error (RMSE) (Figure 5b). The 70LPT considered the 

aforementioned canopy height variation in the field which 

resulted in high correlation and a low amount of scattering. 

Comparing the reference measurement with the third UAV 

lodging percentage derived from the 60LPT, the correlation (R²  

Figure 5. Scatterplots of manually determined lodging 

percentage (reference measurement) and calculated UAV-based 

lodging percentage for 80LPT (a), 70LPT (b), 60LPT (c) 75 

DAS. Black line represents regression line; blue line represents 

1:1 line (n = 36). LPT: lodging percentage threshold; RMSE: 

root mean square error. 
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= 0.921) decreased again (Figure 5c). Canopy areas affected by 

lodging were partly not considered through the lower canopy           

height threshold. Thus, the lodging percentage was 

underestimated, especially in the less affected lodging plots, 

where the canopy height threshold was more relevant. 

 

The UAV lodging percentage parameter was determined with 

very high accuracy in breeding trials (R² = 0.96). The results 

showed, that the 70LPT enabled the detection of lodged areas 

within the canopy and took into account the CH variance in the 

field as well. Liu et al. (2018) and Yang et al. (2017) reached R² 

greater than 0.9 and a high accuracy by assessing the lodging 

percentage in rice using structure, texture or thermal difference 

between presence and absence of lodging. But the accuracy 

strongly depended on the trained support vector machine (SVM) 

and the currently dataset. The quantification of lodging from 

thermal images is also very challenging, because external factors 

such as small changes in wind speed and cloud cover strongly 

influence the derived canopy surface temperatures (Chapman et 

al., 2014; Jackson et al., 1983). The lodging assessment through 

the UAV canopy height was much more independent from 

abiotic and external factors. Only a simple RGB camera was 

necessary without demand for calibration. In general, only large 

canopy height variations within a field can cause problems. In 

this extreme case, lower grown plants would be labelled as 

lodged plants. This issue, however, can be considered in the 

workflow by applying differentiated MAXCH values in areas 

with strong CH variations caused by different soil or nutrition 

conditions. 

 

3.2 Lodging Development 

The approach was additionally used to determine the lodging 

development like the lodging recovery rate or evaluate the 

influence of different lodging events based on a multi-temporal 

consideration of lodging percentage. Considering the multi-

temporal lodging percentage development for genotype 3 (Figure 

6), a low average lodging percentage value of 27 % was observed 

for plots with low sowing density. That indicated, that most of 

the plots were not affected by lodging at the beginning of 

observation (75 DAS). However, caused by a second lodging 

event, the average lodging percentage increased from 27 % to 60 

% (81 DAS). The plots with high sowing densities showed 

distinctly larger areas that were heavily affected by lodging. 

Regarding the lodging development, the average lodging 

percentage decreased from 80 % to 70 % at the end of 

observation.  

Figure 6. Average lodging percentage (%) with standard 

deviation for both sowing densities (high = green, low = orange) 

and genotype 1 (left). RGB image to illustrate the lodging 

pattern for genotype 1 (right). 

 

The lodging pattern for genotype 1 was very similar among the 

plots. The center area was heavily affected by lodging, so that the 

main part of the plot completely lay on the ground (Figure 6). 

The outer area were mainly uninfluenced by lodging. 

Considering the multi-temporal lodging percentage development 

of genotype 2, the aforementioned second lodging event could 

not be observed. Moreover, the lodging percentage for the plots 

with low sowing densities continuously decreased from 70 % to 

55 % (Figure 7). In comparison to the other genotypes, genotype 

2 nonetheless had the highest lodging percentage values in both 

sowing densities. In addition, the standard deviations for plots 

with high sowing density were very small. In contrast, the 

lodging percentage for plots with low sowing densities varied 

between 40 % and 90 %.  

Figure 7. Average lodging percentage (%) with standard 

deviation for both sowing densities (high = green, low = orange) 

and genotype 2 (left). RGB image to illustrate the lodging 

pattern for genotype 2 (right). 
 

The lodging pattern for genotype 2 was also very homogenous. 

Although the lodging percentage was in general very high, the 

lodging severity was low. Mainly, plant apices (spikes) were 

pressed down, without strong influence on the stems. 

The last genotype 3, had the lowest average lodging percentage 

compared to other genotypes, but the highest standard deviations. 

The average lodging percentage was again higher in the low 

sowing density compared to the high sowing density. The multi-

temporal observation indicated increasing lodging percentage, 

although no further lodging event was observed in the field. 

Figure 8. Average lodging percentage (%) with standard 

deviation for both sowing densities (high = green, low = orange) 

and genotype 3 (left). RGB image to illustrate the lodging 

pattern for genotype 3 (right). 

 

The lodging pattern was quite similar to genotype 2 Only plant 

apices (spikes) were pressed down, without strong influence on 

stems. 

 

The results showed that the average lodging percentage of the 

low sowing density was at least 20 % higher compared to the high 

sowing density. Already studies from Berry et al. (2002) or Berry 

et al. (2004) indicated, that lodging risk is reduced with lower 

sowing densities. This study confirmed additionally, that plants 

growing in the edges of breeder plots (Figure 6) or plants growing 

near the wheel tracks were less prone to lodge than plants 

growing elsewhere in the field. Already the research from Scott 

et al. (2005) showed that the stronger resistance to lodging was 

caused by a higher stem strength of edge row plants resulting 

from reduced competition for resources. Finally, the multi-

temporal observation illustrated, that different lodging events can 

be monitored by assessing the lodging percentage at different 

time points (Figure 6). In contrast, the recovery assessment using 

multi-temporal lodging percentage calculation was more 

complicated. The lodging development can be influence by 
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plants which sprout out again (Figure 9) due to the high lodging 

severity and early development stage of occurrence. 

Consequently, new grown plants (green) decreased the lodging 

percentage (Figure 6, Genotype 1), but will not mature till harvest 

and influenced the yield quality negatively.  

Figure 9. New grown plants (green) after high lodging severity 

and early development stage of occurrence. 

 

Through the natural seasonal development of cereal crops the 

canopy height was additionally decreasing from flowering (75 

DAS) to ripening (102 DAS). Thus, the absolute height 

difference between lodge plants and healthy plants was 

decreasing, resulting in an uncertainty of lodging percentage 

calculation (Figure 8, Genotype 3). For high accuracy, the 

lodging percentage should be determined at least two weeks after 

occurrence.  

 

3.3 Lodging Severity 

How already illustrated in the previous chapter, plants can be 

affected by differentiated lodging severities. Respective to the 

lodging percentage parameter the amount of affected plants 

below 50LPT were rated equal compared to plants, which were 

only slightly affected by lodging (area between 80LPT to 

60LPT). The lodging severity approach with different thresholds 

(Figure 10) was able to consider the canopy height variation and 

the possible yield impairment caused by lodging.  

Figure 10. RGB imagery of barley plot showing intensity of 

lodging (left) and corresponding lodging severity derived from 

the CHM (middle), as well as canopy height distributions (m) 

with visualization of different lodging percentage thresholds 

(LPTs) (right). 

 

The 50LPT applied to the lower density plots allowed detection 

of only 35% of lodged area at maximum and 10% at minimum 

(Table 2). Contrarily, 70LPT determined a distinctly higher 

amount of 71% lodge area at maximum and 27% at minimum. 

The applied weighting procedure within the WALS calculation 

based on the different thresholds was able to consider this lodging 

intensity variation and, compared to the lodging percentage 

derived from 70LPT, led to a difference of 16% at maximum 

(Table 2). The plots with high sowing density showed distinctly 

larger areas heavily affected by lodging, with 69% at maximum 

and 50% at minimum for 50LPT. Nevertheless, the variations 

still present between the different LPTs resulted in a deviation of 

15% at maximum between 70LPT and WALS for the plots with 

high sowing density. Comparing ALS and WALS clarifies that 

the weighting procedure applied during WALS calculation 

consider additionally the yield impairment to a greater extent 

while ALS probably slightly overestimate the lodging severity. 

The maximal difference of the WALS values and the ALS values 

was 6 %. 

Table 2. Overview of UAV lodging percentage for four LPTs 

(80%, 70%, 60%, 50%), ALS and WALS, and manually 

determined lodging percentage reference data for different 

sowing densities and genotypes 75 DAS (n = 36). LPT: lodging 

percentage threshold; WALS: weighted average lodging 

severity; ALS: average lodging severity. 

 

The lodging severity parameter WALS and ALS were able to 

consider the CH variance and the information density was 

compared to a simple binary approach much higher. Several 

papers (Bendig, 2015; Chapman et al., 2014; Liu et al., 2018; 

Yang et al., 2017) implemented only a presence or absence of 

crop lodging and the different lodging severities illustrated in 

Figure 10 were treated equally. The weighted method 

implemented to WALS parameter could improve the yield 

impairment caused by lodging. Already Fischer and Stapper 

(1987) or Berry and Spink (2012) showed that the yield potential 

was influenced by the intensity (angle) of the permanent displace 

from its upright position. Related to the UAV application also 

Murakami et al. (2012) showed, that the grain yield was impaired 

stronger by high lodging scores and a low average canopy height. 

The WALS development was the first step to predict the yield 

losses of lodge fields. The different factors applied in Equation 

(2) probably should weighted stronger the lower LTP values but 

has to be evaluate with yield data comparison in further studies. 

 

 

4. CONCLUSION 

Unmanned Aerial Vehicles (UAVs) are increasingly used, and 

open new opportunities, in agriculture and phenotyping because 

of the flexible data acquisition. It can provide plant breeders, 

insurance companies and farmers timely detailed information on 

plant traits with low monetary costs. Especially breeding trials 

are difficult and extensive to monitor resulting in an increasing 

need for a faster selection of superior lines. The lodging 

quantification based on the 3D canopy structure is compared to 

other approaches much more independent from environmental 

conditions, which strongly increases the practicability. 

Additionally, it enables the possibility to consider the yield 

impairment caused by lodging. The results showed that the 

developed method is well suited for barley genotypes and 

therefore has the potential to be applied to other cereal crops, 

such as wheat. The pixel-based lodging severity information can 

be further used in precision farming to generate harvest maps and 

improve yield quality by avoiding areas in the harvest process 

that sprout again after heavy lodging events during the early 

stages of plant development. In summary, the developed lodging 

assessment approach can be used for insurance applications, 

precision farming, and breeding research. This trait, together with 

differentiated recovery are novel traits next to lodging severity 

will aid the selection for genetic lines. 
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