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ABSTRACT: 

 

The study evaluates five existing segmentation algorithms to determine the method most suitable for individual tree detection across a 

species-diverse forest: raster-based region growing, local maxima centroidal Voronoi tessellation, point-cloud level region growing, 

marker controlled watershed and continuously adaptive mean shift. Each of the methods has been tested twice over one mixed and five 

single species plots: with their parameters set as constant and with the parameters calibrated for every plot. Overall, continuous adaptive 

mean shift performs best across all the plots with average F-score of 0.9 with fine-tuned parameters and 0.802 with parameters held at 

constant. Raster-based algorithms tend to achieve higher scores in coniferous plots, due to the clearly discernible tops, which 

significantly aid the detection of local maxima. Their performance is also highly dependent on the moving size window used to detect 

the local maxima, which ideally should be readjusted for every plot. Crown overlap, suppressed and leaning trees are the most likely 

sources of error for all the algorithms tested. 

 

 

1. INTRODUCTION 

Tree-level forest inventory has the potential to prove very useful 

in forest management, both in industry and natural conservation. 

Data on individual trees are important inputs for biomass 

estimation, biodiversity assessments and forest growth models. 

With the rapid development of remote sensing technologies and 

computing power, it is nowadays possible to extract and analyse 

forestry data on a sub-stand level and lidar is leading the way as 

the dominant technology for 3D mapping of forests. UAV lidar 

has attracted a lot of attention in the recent years as a less costly 

and more accessible alternative to airborne laser scanning (ALS), 

while producing very high density point clouds. The large 

volume of data produced by UAV lidar calls for improvement of 

methodologies of point cloud processing and feature extraction. 

Individual tree features extracted from lidar data can be a useful 

input for species classification (Dalponte et al., 2016; Fassnacht 

et al., 2016). In order to achieve this, segmentation needs to be 

performed using method achieving high precision across a wide 

variety of species.  

 

A number of algorithms have been developed over the years for 

segmentation of lidar point clouds collected over forests to 

delineate individual trees. Some of the most popular ones employ 

region growing (Dalponte and Coomes, 2016; Solberg et al., 

2006) watershed delineation (Chen et al. 2006) and clustering 

(Ferraz et al., 2012; Gupta et al., 2010; Lindberg et al., 2014; 

Xiao et al., 2016). However, despite the abundance of available 

algorithms, the vast majority produce reliable results only under 

very specific conditions e.g. specific species. Different 

processing methods have varied performance in different types 

of forests, as they make assumptions about the spacing between 

the trees, their shape and size. Most of them have been developed 

specifically for conifers (Hamraz et al., 2016). Coniferous trees 

often have one characteristic top of the crown, which makes it 

easier to detect using local maxima based methods. Variability of 

height within the tree crowns, characteristic for many broadleaf 

species, is one of the main sources of error for region growing 

and watershed algorithms (Hamraz et al., 2016). 

A number of studies (Kaartinen et al., 2012; Vauhkonen et al., 

2012; Eysn et al., 2015) have reviewed several segmentation 

algorithms in a variety of environments, but have not explored 

the effect of species-dependant individual tree structural 

parameters or heterogeneity of the data such as point cloud 

density, on the algorithm performance. 

 

The study is focused on tree segmentation from a point cloud 

obtained by a UAV lidar system flown over mixed temperate 

forest, in order to determine the method most suitable for single 

tree detection across variety of species. The final goal is to create 

a dataset of individual trees on which delineation and species 

classification can be performed. 

 

2. METHODOLOGY 

2.1 Study area 

 
Figure 1. Aerial view of Hangingleaves Wood in Cockle Park 

Farm, Northumberland, with six plots: A – European larch, B – 

Sycamore, C – English oak, D – Sitka spruce, E – Norway spruce, 

F- mixed. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-657-2019 | © Authors 2019. CC BY 4.0 License.

 
657



The site chosen for the study is Hangingleaves Wood in Cockle 

Park Farm near Morpeth, Northumberland. The farm is property 

of Newcastle University, which enables an easy access to the 

study area. Hangingleaves Wood is a woodland consisting of 5 

distinct tree species: European larch (Larix decidua), Sitka 

spruce (Picea sitchensis), Sycamore (Acer pseudoplatanus), 

Norway spruce (Picea abies) and English oak (Quercus robur). 

Most of the woodland is divided into single species areas, which 

allows for an easy establishment of the plots, as seen in Figure 1. 

Six plots have been defined in the site, five single-species and 

one mixed (Sycamore and English oak). Ground truth data such 

as tree position, height and crown diameter, has been provided by 

a previous study in the same area (Berra et al., 2019).  

 

 

2.2 Data collection 

UAV lidar data has been collected using ROBINI MINI UAV 

lidar system in December 2018. The sensor used was RIEGL 

miniVUX-1UAV, a lightweight laser scanner developed 

specifically for UAVs, with accuracy of 15 mm and precision of 

10 mm. ROBIN MINI can achieve very high point cloud density, 

up to 90 points/m2, depending on elevation and speed of the 

flight. For purpose of this study, the UAV was flown at 60 m 

height, at constant speed of 8 m/s, with stabilized seesaw 

trajectory. The resulting point cloud has density of approximately 

50 points/m2.  

 

 

2.3 Data pre-processing 

 

 
Figure 2. Plot B (Sycamore), top – before pre-processing, bottom 

– after pre-processing. 

 

The lidar data has been quality checked for coverage and spatial 

accuracy and obtained scores within the range recommended by 

processing guidelines. Further calibration was conducted using 

TerraSolid software package. Classification of the ground points 

allowed for height normalization. To improve the quality, data 

has been denoised and filtered for high intensity points. The high 

intensity points are used only to emphasize certain aspects of the 

tree structure such as trunks that could facilitate the 

segmentation. This paper does not focus on exact intensity values 

and reflectivity of the targets, hence no radiometric calibration 

was performed. Points up to 2 meters from the ground level were 

not included in tree detection, as they belong to bushes and grass 

that are out of interest. The effects of pre-processing on the point 

cloud are presented in Figure 2. 

 

 

2.4 Segmentation methods 

Five different existing algorithms have been used to segment the 

point cloud and detect the trees. Each of the methods has been 

originally developed using data from a specific type of forest. 

Three of the methods require smoothed canopy height models 

(CHMs) in order to identify the trees, while two methods work 

directly on the point cloud. All the raster-based methods require 

the input of CHM spatial resolution and the size of moving 

window to identify the local maxima. These parameters were set 

at default of 0.5m and 4m respectively. Methods 1-4 are available 

through lidR R package (Roussel et al., 2019), while Method 5 

has been provided by one of the authors. Adjustable parameters 

have been listed under each method, with default values given in 

parenthesis. 

 

Method 1 (Dalponte and Coomes, 2016): raster-based local 

maxima region growing, developed using data from Alpine 

mixed forest and methods used by Hyyppa et al., 2001. finds 

local maxima within a CHM to work as initial points to which the 

neighbouring crown points are added through a decision tree, 

based on two thresholds: if the vertical distance between the point 

and the maximum is less than a defined percentage of total tree 

height (threshold 1) and if the point’s height is greater than the 

average height of the region multiplied by a set number 

(threshold 2). The process continues until all the points have been 

segmented. Parameters: growing threshold 1 (0.45), growing 

threshold 2 (0.55), maximum crown diameter (10 pixels), 

minimum height of the tree (2 m). 

 

Method 2 (Silva et al., 2016): CHM based local maxima 

Voronoi tessellation, developed for segmentation and delineation 

of longleaf pine (Pinus palustris). The algorithm applies a buffer 

around the local maxima, calculating its diameter by multiplying 

the tree height by 0.6 (the value can be adjusted by the user), in 

order to delineate the tree crowns. The points are further split into 

separate tree classes through Voronoi tessellation, with local 

maxima as centroids. Parameters: maximum crown diameter as 

proportion of the tree height (0.6). 

 

Method 3 (Li et al., 2012): Point cloud level region growing, 

developed for use in mixed coniferous forests, uses horizontal 

spacing between the points and separate trees. Moving from the 

top of the tree downwards, the horizontal distance between the 

unclassified point and the nearest point already assigned to a tree 

is compared with a set threshold. Points that are further apart than 

the threshold are excluded from a tree. There are two different 

thresholds, used depending on the height of the point, to account 

for the shape of crown. Dt1 is used if point height is lower than 

the set elevation parameter Zu, Dt2 – if the point height is higher. 

Parameters: dt1 (1.5), dt2 (2), search radius (2 m), Zu (15 m), 

minimum height of the tree (2 m). 
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Method 4 (Chen et al., 2006): Marker controlled watershed 

algorithm, developed in open oak savanna woodland. Assuming 

the tree tops to be in the centre of the crowns and uses them as 

markers which indicate separate ‘catchment zones. Tree crowns 

can be delineated using a flooding simulation on the reverse 

CHM (with the local maxima serving as minima). The areas 

which are first to flood point to separate trees. Parameters: 

minimum height of the tree (2m). 

 

Method 5 (Xiao et al., 2016): Continuously Adaptive Mean Shift 

(CamShift), based on the mean shift clustering algorithm applied 

to urban trees. Applied directly to the point cloud, seeks areas of 

highest point density – in case of trees it is usually the top of the 

crown. Size of the moving window is determined by a parameter 

called bandwidth. Assuming that the width of the crown depends 

on the height of the tree, bandwidth is adaptable to the absolute 

height of the kernel centre. The 3D kernel is based on the Pollock 

tree model (Pollock, 1994), with shape determined by n (value 

between 1 and 2, where 1 is a cone and 2 is an ellipsoid).  

Parameters: bandwidth (5), n (1.5).  

 

Two tests have been conducted to assess the methods. First test 

used parameters calibrated for best performance in each 

individual plot, in order to further examine the full capabilities of 

each method. Second test sets all the parameters of each 

algorithm as constant across all the plots. It is necessary, as broad 

applicability to a range of tree species without prior knowledge 

is required if the methods are to be used prior to species 

classification of the whole woodland.  

All the segmented point clouds were visually assessed and 

validated against the ground measurements. 

 

 

3. RESULTS AND DISCUSSION 

The outcomes of segmentation with calibrated parameters are 

presented in Table 1, with constant parameters – Table 2. Figures 

1-6 represent front and the top view of every plot as a point cloud, 

showing examples of segmentation by each method tested. 

 

3.1 Plot A: European larch (Larix decidua) 

 
Figure 1. Top and the front of Plot A segmented using Method 2 

(calibrated), with each separate tree assigned a random colour. 

 

European larch (Figure 1) is unique among the trees included in 

the study as the only deciduous conifer. The plot achieved highest 

average detection accuracy in the calibrated test and the second 

highest for non-calibrated test (mean F-score of all the methods 

approx. 0.9 and 0.85 respectively), which indicates it is one of 

the easiest to segment. That is due to both its shape, with a clearly 

discernible apex often found in conifers, as well as its deciduous 

nature which in the leaf-off season allows for detection of trunks. 

Test 2 achieved similar results across all the methods, with 

Methods 1 and 2 achieving the highest F-score of 0.865. Method 

5 achieved the lowest score due to high oversegmentation, most 

likely owing to the detection of elements of understorey.  

A. Larch 

  TP FP FN P R F-score 

Dalponte2016 19 4 1 0.826 0.950 0.884 

Silva2016 19 3 1 0.864 0.950 0.905 

Li2010 18 2 2 0.900 0.900 0.900 

Chen2006 16 1 4 0.941 0.800 0.865 

Xiao2016 19 0 1 1.000 0.950 0.974 

B. Sycamore 

  TP FP FN P R F-score 

Dalponte2016 19 3 1 0.864 0.950 0.905 

Silva2016 18 3 2 0.857 0.900 0.878 

Li2012 19 5 1 0.792 0.950 0.864 

Chen2006 18 2 2 0.900 0.900 0.900 

Xiao2016 20 1 0 0.952 1.000 0.976 

C. Oak 

  TP FP FN P R F-score 

Dalponte2016 15 2 5 0.882 0.750 0.811 

Silva2016 16 4 4 0.800 0.800 0.800 

Li2012 14 2 6 0.875 0.700 0.778 

Chen2006 15 3 5 0.833 0.750 0.789 

Xiao2016 17 2 3 0.895 0.850 0.872 

D. Sitka spruce 

  TP FP FN P R F-score 

Dalponte2016 17 1 3 0.944 0.850 0.895 

Silva2016 17 2 3 0.895 0.850 0.872 

Li2012 17 5 3 0.773 0.850 0.810 

Chen2006 19 2 1 0.905 0.950 0.927 

Xiao2016 18 1 2 0.947 0.900 0.923 

E. Norway spruce 

  TP FP FN P R F-score 

Dalponte2016 19 2 1 0.905 0.950 0.927 

Silva2016 17 3 3 0.850 0.850 0.850 

Li2010 19 2 1 0.905 0.950 0.927 

Chen2006 18 2 2 0.900 0.900 0.900 

Xiao2016 17 2 3 0.895 0.850 0.872 

F. Mix 

  TP FP FN P R F-score 

Dalponte2016 18 3 2 0.857 0.900 0.878 

Silva2016 19 4 1 0.826 0.950 0.884 

Li2010 18 3 2 0.857 0.900 0.878 

Chen2006 16 4 4 0.800 0.800 0.800 

Xiao2016 17 1 3 0.944 0.850 0.895 

Table 1. Results of tree detection across all the plots with 

parameters calibrated for the best outcome (Test 1). TP – true 

positive, FP – false positive, FN – false negative, P – precision, 

R - recall 
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A. Larch 

  TP FP FN P R F-score 

Dalponte2016 16 1 4 0.941 0.800 0.865 

Silva2016 16 1 4 0.941 0.800 0.865 

Li2010 18 5 2 0.783 0.900 0.837 

Chen2006 16 2 4 0.889 0.800 0.842 

Xiao2016 18 6 2 0.750 0.900 0.818 

B. Sycamore 

  TP FP FN P R F-score 

Dalponte2016 15 0 5 1.000 0.750 0.857 

Silva2016 15 0 5 1.000 0.750 0.857 

Li2010 19 7 1 0.731 0.950 0.826 

Chen2006 15 0 5 1.000 0.750 0.857 

Xiao2016 18 0 2 1.000 0.900 0.947 

C. Oak 

  TP FP FN P R F-score 

Dalponte2016 16 7 4 0.696 0.800 0.744 

Silva2016 17 8 3 0.680 0.850 0.756 

Li2010 16 15 4 0.516 0.800 0.627 

Chen2006 16 6 4 0.727 0.800 0.762 

Xiao2016 15 5 2 0.750 0.882 0.811 

D. Sitka spruce 

  TP FP FN P R F-score 

Dalponte2016 14 0 6 1.000 0.700 0.824 

Silva2016 14 0 6 1.000 0.700 0.824 

Li2010 15 3 5 0.833 0.750 0.789 

Chen2006 16 0 6 1.000 0.727 0.842 

Xiao2016 12 0 8 1.000 0.600 0.750 

E. Norway spruce 

  TP FP FN P R F-score 

Dalponte2016 7 0 13 1.000 0.350 0.519 

Silva2016 7 0 13 1.000 0.350 0.519 

Li2010 9 1 11 0.900 0.450 0.600 

Chen2006 7 0 13 1.000 0.350 0.519 

Xiao2016 9 0 11 1.000 0.450 0.621 

F. Mix 

  TP FP FN P R F-score 

Dalponte2016 16 4 2 0.800 0.889 0.842 

Silva2016 17 7 3 0.708 0.850 0.773 

Li2010 18 15 2 0.545 0.900 0.679 

Chen2006 17 7 3 0.708 0.850 0.773 

Xiao2016 16 4 1 0.800 0.941 0.865 

Table 2. Results of tree detection across all the plots with 

parameters set as constant (Test 2). TP indicates true positive – 

correctly detected, FP – false positive, oversegmentation, FN – 

false negative, undersegmentation, P – precision, R - recall. 

After calibration, Method 5 performed the best, with F-score of 

0.974 and no false positives. One case of undersegmentation 

occurred in all the processed plots, due to one of the trees leaning 

on another, which causes the two tree crowns to appear as one. 

 

3.2 Plot B: Sycamore (Acer pseudoplatanus) 

Figure 2. Top and the front of Plot B segmented using Method 5 

(calibrated), with each separate tree assigned a random colour. 

 

Sycamores (Figure 2) in plot B have relatively narrow crowns 

with very little overlap between the adjacent trees, which 

explains relatively low level of undersegmentation in comparison 

with the other plots in Test 1. Instances of oversegmentation are 

more likely due to the branching structure, where two major 

branches of one tree are identified as two different specimens. It 

is the plot with highest level of detection accuracy in Test 2, but 

lower recall than in the case of Test 1, as the CHM resolution is 

too low and size of the kernel too large for the plot. Method 5 

obtained the highest accuracy scores in both tests (F-score > 0.9). 

3.3 Plot C: English oak (Quercus robur) 

Plot C is characterized by broad, spread out crowns (Figure 3).  

This feature might explain the larger amount of overdetected 

trees in Test 2 in comparison with the other plots (up to 15 in case 

of Method 3). It is more difficult to establish local maxima in 

trees with broad crowns as they do not have one characteristic  

  

Figure 3. Top and the front of Plot C segmented using Method 3 

(calibrated), with each separate tree assigned a random colour. 

 

peak. Parameter calibration help to significantly reduce the 

number of overdetected trees, but did not improve the recall. 

Underdetection in plot C is mot likely due to some overlap 

between the crowns. Method 5 achieved the best accuracy in both 

tests, but its performance after calibration did not increase 

significantly. 

 

3.4 Plot D: Sitka spruce (Picea sitchensis) 

Due to the presence of foliage, only very small number of trunk 

points could be retrieved, not sufficient to significantly aid tree 

detection (Figure 4). In both tests, Method 4 achieves the best 

result (F-score=0.842 and F-score=0.927). Method 5 notes the 

poorest performance from all the algorithms in Test 2, but 

improves significantly after parameter calibration (from F-

score=0.750 to F-score=0.923).  
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Figure 4. Top and the front of Plot D segmented using Method 4 

(calibrated), with each separate tree assigned a random colour. 

 

In Test 2 the majority of errors were false negative and only 

Method 3 resulted in false positive (3 overdetections). After 

calibration, the number of underdetections was reduced, while 

overdetections increased as some isolated points in the lower 

sections of the crowns were classified as separate trees.  

 

3.5 Plot E: Norway spruce (Picea abies) 

There are no obvious structural differences between Norway and 

Sitka spruce that are visible in the point cloud, however, the plot 

is smaller in area and as a result, more dense. As in case of Sitka 

spruce, the foliage prevents from detection of trunks and lower 

parts of the crown (Figure 5). Those two factors combined make 

it more difficult to detect single trees without fine-tuning the 

parameters. In Test 2 the methods obtained relatively poor 

results, with average F-score of 0.555. The highest F-score of 

0.621 was achieved by Method 1. All the algorithms significantly 

undersegmented the plot, with up to 13 undetected trees for 

methods 1,2 and 4. The accuracy improved by a large margin 

after the calibration with average F-score of 0.895 in Test 1. 

Method 1 and 3 obtained the best result (F-score=0.927), likely 

due to the conical shape of the crown, which aids the detection of 

local maxima. 

  

 
Figure 5. Top and the front of Plot E segmented using Method 1 

(calibrated), with each separate tree assigned a random colour. 

 

3.6 Plot F: Mix (Sycamore and English oak) 

The plot combines the properties of plots B and C, with most of 

the errors occurring due to crown overlap and spread out 

branches (Figure 6). The average segmentation accuracy is 

higher than for plot C, but lower than for plot B with F-

score=0.867 for Test 1 and F-score=0.786 for Test 2. Parameter 

calibration slightly improves the performance of most of the 

algorithms, apart from Method 3 for which the accuracy 

improved significantly (from F-score=0.679 to F-score=0.878). 

In both of the tests, Method 5 achieved the best results. One 

underdetection error was present across all the methods due to a 

suppressed tree with limited number of points in the centre of the 

plot. 

 

Figure 6. Top and the front of Plot A segmented using Method 5 

(calibrated), with each separate tree assigned a random colour. 

3.7  Overall performance of the algorithms 

Figure 7 shows the average performance results for each of the 

algorithms, with and without calibrated parameters. In both cases 

Method 5 achieves the best overall accuracy (F-score = 0.919 for 

calibrated and F-score = 0.802 for uncalibrated), followed by 

Method 1 (F-score = 0.883 for calibrated and F-score = 0.775 for 

uncalibrated). Method 5 obtained the highest scores in four plots 

in Test 1 and three plots in Test 2 out of six plots in total, making 

it the best performing algorithm across a variety of tree species. 

Method 5 is unique in the group, as the only clustering algorithm 

and one of two working directly on the point cloud. As it operates 

in 3D it has a significant advantage over raster-based methods. 

Clustering algorithms are proven to work effectively across a 

variety of vegetation types: urban, temperate and tropical forests 

(Xiao et al., 2016; Ferraz et al., 2012, Ferraz et al., 2016).  

 

 
 

Figure 7. Average F-score, precision and recall for each 

algorithm averaged over all of the plots. Top: fine-tuned 

parameters, bottom: constant parameters.  
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However, certain degree of calibration is still necessary to obtain 

the best results – size and shape of the 3D kernel play a crucial 

role in accurate tree detection and delineation. Even with careful 

fine-tuning of the kernel parameters, the algorithm may not 

always detect separate trees if they are leaning or their crowns are 

overlapping. This is also the case in other methods (Figure 8). 

 

 

Figure 8. Examples of common segmentation errors: a – 

oversegmentation due to diverging branches (plot B), b – 

undersegmentation due to leaning tree (plot A), c – 

undersegmentation due to crown overlap (plot C). 

 

The three raster-based approaches tested in this study achieved 

similar level of accuracy, their performance highly dependent on 

the tree species and parameter calibration. Canopy height models 

(CHM) represent three dimensional reality in 2D causing 

significant oversimplification and loss of  information (Ferraz et 

al., 2012, Kandare et al., 2016). Still, CHM based algorithms are 

some of the most popular segmentation methods, as they allow 

for easy identification of local maxima (Figure 2). This explains 

the high scores of raster-based algorithms among the species with 

conical shape and clearly defined tree tops, particularly Sitka 

spruce and Norway spruce. 

 

However, those methods may struggle with broadleaf trees which 

have wide spread out crowns, usually without one characteristic 

top point. This may result in oversegmentation, when several 

major branches within one specimen, with high degree of 

separation at the top of the crown are classified as separate trees. 

The problem also applies to point cloud-based region growing 

algorithm (Method 3).  Size of the kernel used to detect local 

maxima also has a significant impact on the accuracy of tree 

detection and the raster-based methods achieved higher scores 

when the kernel size was adapted to the particular plot (Figure 9).  

 

Only one suppressed tree has been identified in this study (plot 

F) and it was not detected by any of the methods tested. The 

number of points representing the tree was too low to allow for 

detection. Furthermore, CHMs often omit suppressed and 

intermediate trees, as they represent the uppermost layer of the 

canopy (Kandare et al., 2016). Previous studies have established 

it is possible for clustering-based approaches to successfully 

detect subdominant trees with high level of accuracy, but a 

sufficient number of points is necessary (Eysn et al. 2015).  

 

The exposure of trunks and branching structure in the deciduous 

specimens aids the visual assessment and validation of the 

segmentation results, however further tests on leaf-on data are 

necessary to determine whether it has a significant impact on the 

segmentation process itself.  

 

 

 
Figure 9. Canopy Height Model of Plot E with detected tree tops. 

Top: moving kernel size = 3m, bottom: moving kernel size = 1m. 

  

 

4. CONCLUSIONS 

The study explored a number of segmentation algorithms and 

their performance across a variety of tree species. It established 

Continuous Adaptive Mean Shift (Method 5) as the most robust 

method, achieving high level of accuracy in majority of the plots 

without the need for extensive calibration. As it was the only 

clustering method tested, future studies should further explore the 

utility of a range of clustering algorithms for tree segmentation. 

  

The remaining methods were less consistent in term of 

performance and might be more suitable in a particular setting – 

certain types of vegetation, with specified parameters. Despite 

the oversimplification of the 3D point cloud, as a result of 2D 

canopy height model calculation, under certain conditions and 

with appropriate fine-tuning, CHM segmentation methods can 

achieve good results. Region growing algorithms, both raster and 

point cloud based, tend to perform better in coniferous plots, as 

the tree tops are easier to identify. The majority of plots used in 

this study were homogeneous and only one plot included a mix 

of two broadleaf species. Future studies would benefit from 

including more heterogeneous plots, such as mix of broadleaf and 

coniferous species. 
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