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ABSTRACT: 

 

Modelling hydro-meteorological variables over land and atmosphere comprise of ground sampling at selected locations and predicting 

over the other locations. Remote sensing data can be effectively used to improve predictions by prudently choosing sampling locations 

of variables co-dependent on the prediction variable. This paper presents a framework for estimating the representative area of a ground 

sample and thereby determining the number of samples required for prediction with a given level of uncertainty and spatial resolution. 

Application of the proposed framework for soil moisture as the prediction variable is presented using Google Earth Engine and Scikit-

learn libraries implemented in Python 3 programming language. 

 

  

1. INTRODUCTION 

Modelling of hydro-meteorological variables over land and 

atmosphere comprises sampling at selected locations followed 

by prediction at other unmeasured locations in study area. 

Since the hydro-meteorological variables are spatially and 

temporally varying, precise and frequent measurement is not 

feasible at every location. The auxiliary variables, available at 

the unsampled locations through remote sensing are used for 

making the predictions better. Although ground-based 

sampling is expensive as compared to remote sensing, it is 

more accurate. On the other hand, remote sensing covers a 

large spatial extent and hence, unlike ground-based sampling 

it can be useful to predict the required hydro-meteorological 

variable throughout the study area. 

 

The ground-based samples are characterized by their accuracy 

and spatial extent represented by them. Heterogeneity present 

over the land-atmosphere interface governs the area 

represented by each sample. Each ground sample delivers 

information for an area in which the prediction variable has the 

same value. The spatial extent of this homogeneous area is 

termed as ‘representative area’ for the sample.  In addition to 

spatial heterogeneity, each sample location has an inherent 

variability because of its stochastic nature.  

 

For the given study area and conditions, deciding the number 

of ground samples is challenging. The prior knowledge in the 

form of physical properties like land use and land cover, 

elevation, soil type is necessary in this scenario. The area 

represented by a ground sample depends upon the surrounding 

heterogeneity at the sampling location. Lesser the 

heterogeneity, smaller is the number of samples required for 

that area and vice-versa. Since the prediction variable is not 

measured at every location, there is no direct knowledge of its 

heterogeneity. The use of the auxiliary or predictor variables 

is made to check the heterogeneity of the prediction variable. 

These predictor variables are remotely sensed variables which 

are co-dependent on the prediction variable and hence they can 

be used for the estimation of the prediction variable. The 

prediction variable considered in this work is soil moisture and 

various remotely sensed predictor variables are taken as input 

datasets. The fusion of predictor variables and the ground 

sample is employed to obtain information about the 

heterogeneity of the prediction variable in the study area. 

 

Traditionally remote sensing has been used to estimate soil 

moisture at varying spatial and temporal resolution 

(Woodhouse, 2006). Passive and active microwave remote 

sensing has been used effectively using brightness temperature 

and backscattering coefficients (Petropoulos, 2017). The 

principle and wavelength in deriving the surface soil moisture 

content differ in the passive and active domain (Ulaby et al., 

1986). Various algorithms are derived based on radiative 

transfer theory, water balance model, land-surface models, 

integral equation models, polarimetry based (Chandrasekhar, 

1960; Dubois et al., 1995; Schlenz et al., 2008; Lu et al., 2012). 

Remote sensing has delivered an efficient way to estimate 

hydro-meteorological variables with the least workforce.  

 
For making predictions, based on the heterogeneity present in 

the study area, a suitable resolution (grid cell size) can be 

decided. The ground samples collected act as the training data 

for the representative area of the sample. Therefore, the grid 

cell size can be chosen depending upon the representative area 

of the ground sample. The smallest representative area of the 

ground samples is chosen as the grid cell for prediction. 

 

The objective of this work is to derive the heterogeneity map 

of soil moisture, for a Critical Zone Observatory (CZO), in the 

Ganga basin, India. For this paper, the modelling is carried out 

by temporal averaging the predictor variables, i.e. an average 

is taken by considering the complete time period to eliminate 

the temporal variations in the heterogeneity. This objective 

also includes the determination of the improved sampling 

locations and their representative area. Depending upon the 

determined grid cell size, a decision to acquire more predictor 

datasets with a finer spatial resolution is made.  
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2. STUDY AREA AND DATASET DESCRIPTION

Figure 1. The study area and the locations of stations in soil moisture sensor network (Gupta et al., 2018) 

2.1 STUDY AREA 

The proposed framework was applied on the bounding box 

enclosing the study area which is known as HEART 

(Heterogeneous Ecosystem of an Agro Rural Terrain) - CZO. 

The CZO is a small watershed (21 km2; 80°8’0” E - 80°11’0” 

E and 26°31’43.93” N 26°36’14.85” N) of the Pandu river 

basin, a tributary of the River Ganges, India. This study area 

is selected, because it has a network of 15 in-situ soil moisture 

measurement is sites (Gupta et al., 2019). The in-situ data is 

available from Aug 2017 to Oct 2018 i.e. for 14 months, and 

hence the remote sensing input data are also averaged over this 

time period, which enables a comparison with the ground 

measurements. 

2.2 Datasets Used 

The literature suggests that soil moisture being an integral 

element in the hydrological cycle, is primarily dependent on 

meteorological parameters (temperature, precipitation, 

evapotranspiration), crop characteristics, soil properties, land 

use and land cover, elevation. These interdependent variables 

define the soil moisture profile spatially and temporally. Thus, 

the remote sensing datasets chosen for this study are direct or 

indirect indicators of soil moisture variable (Huffman et al., 

2001; Huffman et al., 2007; Entekhabi et al., 2010; Mu et al., 

2013; Entekhabi et al., 2014). Table 1 lists the remote sensed 

products used in the study and Figures 2.1 to 2.4 show their 

spatial variations.  

Table 1. List of input datasets 

Figure 2.1.  Digital Elevation Model (DEM) 
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Figure 2.2. Leaf Area Index (LAI) 

Figure 2.3. Normalised Differenced Vegetation Index 

(NDVI) 

Figure 2.4. Evapotranspiration (ET) 

3. METHODOLOGY

The methodology for the proposed framework is implemented 

in Python 3 programming language with the Google Earth 

Engine (GEE) and Scikit-learn libraries (Pedregosa et al., 

2011; Gorelick et al., 2017). 

3.1 Pre-processing of the Datasets 

All the remote sensing input datasets were extracted for the 

study area. Since the input data are collected from different 

satellites having different spatial and temporal resolutions; all 

the datasets were brought to the common platform by temporal 

averaging. Also, since the spatial resolution of input datasets 

varied from 30 m (SRTM DEM) to approx. 25 km (TRMM 

Rainfall), the datasets were resampled to the finest resolution 

available, i.e. 30 m. Thus, 30 m was the minimum cell size 

considered for prediction. Nearest neighbour technique was 

employed for resampling. Pre-processing resulted in a 

temporally lumped input datasets having the same spatial 

resolution of 30 m.  

3.2 Discretisation of Input Datasets 

In this step, discretisation or binning of the continuous input 

datasets with a given level of information loss was carried out. 

Entropy which a measure of the information content was 

monitored while discretising the input dataset (Shannon, 1948; 

Meurer 2015). As the number of bins reduces, the information 

loss increases, but the computational resources needed for 

further processing reduces.  Hence, to decide the number of 

bins an iterative procedure was applied for each input dataset. 

Starting from 2 bins, the number of bins were increased while 

the entropy of binned inputs was compared with the entropy 

of the original data. The process was terminated when the 

entropy gain because of the addition of a new bin was within 

the pre-specified threshold limits.  

The given limit for entropy loss is user determined and 

depends upon the level of accuracy required for the analysis. 

For this work, the analysis was carried out for different 

percentage of allowable entropy loss threshold for each input 

dataset. This step resulted in the discretised input datasets with 

the finite number of bins corresponding to every input dataset. 

The discretisation or binning was carried out using Scikit-learn 

library in Python programming language.  

3.3 Discretised Input Combinations 

The discretised datasets act as the inputs for determining the 

prediction variable. For a given set of discretised input values, 

the expected value of the prediction variable should be the 

same irrespective of the location of the grid cell under 

consideration. Hence, in this step, all possible combinations of 

the discretised input values were obtained. There is a limit for 

the possible number of combinations since the inputs are 

discretized in a finite number of bins. This step resulted into a 

dictionary in which each unique combination of discretised 

input data values was given a unique identification (id). 

3.4 Heterogeneity Map 

Regionalisation of the homogeneous grid cells is carried in this 

step. Once all the possible combinations of input datasets were 

given the unique id’s, the input datasets were processed cell by 

cell. Depending upon the values present in the grid cell under 

consideration, the equivalent unique identifier was assigned to 

the corresponding output grid cell. Once, all the grid cells were 

processed, an image containing the output values was formed. 

Regions with the same identities (having the same cell value 

representing the prediction variable) were created based on the 

positional adjacency of the cells with the same identity or the 

output value. The patches in which the adjacent grid cells had 

similar identities (unique values) represent homogeneous 
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regions. The smallest single cluster thus formed represents the 

suitable grid cell size for prediction.  

4. RESULTS AND DISCUSSION

Different sets of results (binned input datasets, and 

corresponding heterogeneity maps) were obtained as the 

algorithm was applied for different levels of information loss. 

The results thus obtained are presented and discussed in this 

section. 

4.1 Discretised Input Datasets 

Table 2 shows the results for different values of thresholds and 

the corresponding discretised inputs and their combinations. 

Table 2. Results for different thresholds on entropy loss 

It can be seen from Table 2 that, the possible number of 

combinations depends upon the choice of threshold, which 

ultimately affects the heterogeneity map. Here the threshold 

on entropy is a crucial parameter to selected. The threshold is 

related to entropy loss, i.e. for lower threshold the resulting 

map will be more heterogeneous (showing more variation) and 

vice versa. Hence, the choice of threshold depends upon the 

required accuracy for the modelling as well as the variability 

available in the input datasets. For example, Figs. 2.1 & 4 of 

original and discretised DEM to show the effect of 

discretisation. 

Figure 4. Discretized DEM for threshold = 0.0001 

Figures 5.1 to 5.3 present the heterogeneity map of soil 

moisture derived for different levels of entropy threshold. As 

expected, the variability of the heterogeneity map increases 

with the reduction in the threshold value.

Figure 5.1. Threshold Value = 10 

Figure 5.2. Threshold Value = 0.01 
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Figure 5.3.  Threshold Value = 0.0001 

4.2 Summary and Conclusion 

The paper proposes a framework for estimating hydro-

meteorological variables at unmeasured locations based on 

limited ground samples and remote sensed data of auxiliary 

variables. Although the research scope is broad and can be 

applied for any hydro-meteorological variable, we have tested 

it for soil moisture estimation. This method is flexible in terms 

of the spatiotemporal resolution of the input datasets. If some 

of the input datasets have coarse resolution and/or having less 

variability over the study area, then the algorithm 

automatically marks them as ‘less significant’ in the 

heterogeneity map. The variables having finer resolution and/ 

or having more variability contributes more to the 

heterogeneity map.

The proposed framework provides an overview of prevailing 

heterogeneity among the predictor variables present 

throughout the study area. The heterogeneity maps derived for 

the study area provides an alternate method to select sampling 

ground locations. Sampling in the same homogeneous region 

can be avoided to minimize redundancy. Hence, cost-

effectiveness in ground sampling can be achieved. Further a 

representative area of each sample can be determined if the 

location of the sample is already known.  A grid can be formed 

having cell size equal to smallest homogeneous patch and 

henceforth it can be used for prediction applications. Here, this 

smallest homogeneous patch may be larger than the finest 

resolution dataset available amongst the input datasets. This 

means that in spite of the availability of finer resolution data, 

the prediction can be efficiently carried out to a larger scale to 

achieve computational efficiency. 

4.3 Future Scope 

The proposed framework does not consider the temporal 

dynamics of the homogeneous patches. Since the input 

variables are dynamic and are further dependent on other 

hydro-meteorological variables, the heterogeneity map varies 

with time.  

Heterogeneity map depends directly upon the discretisation or 

binning of the continuous input variables. Binning can be done 

according to the natural breaks, equal intervals, minimum 

message length or any method of choice ( Liu et al., 2002). 

Each of the discretisation methodologies has its advantages 

and disadvantages. It is important to note that the discretisation 

method should try to keep the number of bins finite.

Heterogeneity map obtained from the above framework can 

contain a large number of small patches of homogeneous 

regions. From Fig 5.3, (threshold value = 0.0001) ) it is evident 

that the spatial aggregation of various small patches having 

heterogeneous areas can result into large homogeneous 

regions (Marceau et al., 1994). Thus, the representative area of 

each sample, as well as the grid size for prediction can be 

increased. This step can be carried out if it is permissible to 

lose some level of information during the process of spatial 

aggregation. Discretisation is a tuning parameter for 

heterogeneity map behaviour in the radiometric domain while 

spatial aggregation is a tuning parameter in the spatial domain. 

The proposed framework can be validated by comparing the 

in-situ measurement data with the heterogeneity map produced 

by the remote sensing data. The inter-patch (heterogeneous 

region) and intra-patch (homogeneous region) can be validated 

is sufficient in-situ samples are available for the study region. 
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