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ABSTRACT: 

 

Weeds are one of the major restrictions to sustaining crop productivity. Weeds often outcompete crops for nutrients, soil moisture, 

solar radiation, space and provide platforms for breeding of pests and diseases. The ever-growing global food insecurity triggers the 

need for spatially explicit innovative geospatial technologies that can deliver timely detection of weeds within agro-ecological systems. 

This will help pinpoint maize fields to be prioritized for weed control. Satellite remote sensing offers incomparable opportunities for 

precision agriculture, ecological applications and vegetation characterisation, with vast socioeconomic benefits. This work compares 

and evaluates the strength of Sentinel-2 (S2) satellite with the constellation of Dove nanosatellites i.e. PlanetScope (PS) data in detecting 

and mapping Striga (Striga hermonthica) weed within intercropped maize fields in Rongo sub-county in western Kenya. We applied 

the S2 and PS derived spectral data and vegetation indices in mapping the Striga occurrence. Data analysis was implemented, using 

the Guided Regularised Random Forest (GRRF) classifier. Comparatively, Sentinel-2 demonstrated slightly lower Striga detection 

capacity than PlanetScope, with an overall accuracy of 88% and 92%, respectively. The results further showed that the VNIR (Blue, 

Green Red and NIR) and the Atmospheric resistance Vegetation Index (ARVI) were the most fundamental variables in detecting and 

mapping Striga presence in maize fields. Findings from this work demonstrate that Sentinel-2 data has the capability to provide spatial 

explicit near real-time field level Striga detection – a previously daunting task with broadband multispectral sensors.  

 

 

1. INTRODUCTION 

1.1 Background 

Timely and repeatable spatial explicit information on inter and 

intra-field variability of agro-ecological systems is key to devise 

adaptive and informed management decisions regarding crop 

productivity, resource allocation and labour efficiency (Houborg 

and McCabe, 2018a). Advancements in remote sensing 

technologies, data analytics, research and monitoring initiatives 

of invasive pests and weeds provide tremendous benefits to the 

continuous and near real time observations of crop health and 

crop phenological development (Mutanga et al., 2017). However, 

there is an inevitable unbalanced trade-off between the spatial 

resolution and frequency of observations that can be derived from 

the conventional satellites. Generally, most conventional 

satellites providing very frequent observations (daily and near 

daily revisit time) lack in spatial resolution, such as the Moderate 

resolution Imaging Spectrometer (MODIS) (Masocha et al., 

2018). High frequency of observation coupled with high spatial 

resolutions facilitates the rapid detection evolving from crop 

dynamics at spatial scales, high enough for timely interventions 

and effective resource management (Houborg and McCabe, 

2018a).  

 

The advent of the CubeSat (~ 10 Kg) in particular, data from 

Planets Labs Inc, provides satellite images collected by a 

constellation of nanosatellites (Doves) at very high spatial 

resolutions (VHSR) (Baloloy et al., 2018). Constellations of 

these 175 CubeSats are proving to be an innovative source of 

data, with vast potential to overcome the spatial-temporal 

limitations of conventional single sensor satellite missions 

(Houborg and McCabe, 2018b).  

 

The aforementioned nanosatellites are equipped with unique 

multispectral sensors VNIR (420-900nm) at 3m spatial resolution 

and provide daily global data equivalent to a daily collection 

capacity of 350 million km²/day (Planet, 2018). However, since 

the first launch of the first flock of Doves on the 22nd of June 

2016, research on the possible benefits afforded by PlanetScope 

data for landscape species characterisation is still limited (Cooley 

et al., 2017). This could be attributed to the newness of CubeSats, 

the cost of imagery, concerns over cross-sensor calibration, 

location accuracy, image quality, data availability and 

accessibility (Cooley et al., 2017). However, these nanosatellites 

can essentially improve spatial analysis methods for weed 

identification, detection and mapping within agro-ecological 

systems by providing consistent information showing in-field 

variability in weeds configuration and growth patterns (Yue et 

al., 2018).  

 

Although the CubeSats are superior in their spatiotemporal 

resolution, the radiometric coverage is inferior to the 

conventional satellites such as Sentinel-2 (S2). This research 

evaluates and intercompares the capabilities and potential 

scientific utilities of S2 data with the very high spatial resolution 

nanosatellite data of PlanetScope (PS) to detect and map Striga 

(Striga hermonthica) in intercropped African farm fields. S2 is a 

combination of two sensors (2A-2B) developed by European 

Space Agency (ESA) (Chemura et al., 2018). These sensors 

provide images at 10, 20 and 60 m spatial resolution and a 

spectral range of 440 to 2280 nm at a combined global average 

revisit time of 5 days (Immitzer et al., 2016). Although several 

capabilities of S2 have been successfully tested, such as 

evaluating rangeland quality (Ramoelo et al., 2015; Shoko and 

Mutanga, 2017), above biomass estimation (Sibanda et al., 2015) 
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water hyacinth mapping (Thamaga and Dube, 2018) and 

understanding crop behaviour (Veloso et al., 2017; Vrieling et al., 

2018) its utility in detecting and mapping Striga occurrence is not 

documented. The use of S2 imagery is advantageous because of 

its spatiotemporal coverage, the presence of the strategically 

positioned Red-edge bands, 13 multispectral bands, its global 

foot-print and free-availability. 

 

Striga is one of the severe biological crop pests reducing food 

production in Sub Saharan Africa resulting in more than 

US$1billion in losses every year (Atera et al., 2013; Scholes and 

Press, 2008). Striga is a parasitic weed whose existence relies on 

availability of the cereal crops in particular maize and sorghum 

(Khan et al., 2002; Midega et al., 2017). Since most optical 

remote sensing instruments capture top of canopy reflection, the 

use of spaceborne sensors in mapping Striga occurrence pose 

huge mapping challenges as the weeds mostly occur underneath 

cereal plants. Crop health condition and phenology metrics 

entrenched within vegetation indices are, therefore, crucial to 

predict and inform on the existence of the understorey weed.   

 

In this study, we evaluated the strength and usability of S2 

compared to the PS data in detecting and mapping Striga 

occurrence within maize fields in western Kenya, using GRRF 

classification ensemble. GRRF algorithm is superior in its ability 

to identify key variables and robust in data processing 

capabilities (Mureriwa et al., 2016). GRRF is regarded as one of 

the most robust and effective classification method for agro-

ecological systems, using very high spatial resolution satellites 

like PS, particularly within heterogeneous landscapes (Adam et 

al., 2017; Kyalo et al., 2017).  

 

 

2. MATERIALS AND METHODS 

2.1 Study area 

The study was conducted in Rongo Subcounty, Migori County of 

Western Kenya. Rongo is administratively divided into four 

wards namely; North, East, Central and South Kamagambo 

(Figure 1). The town is located at latitude -0.75786S and 

longitude 34.60901E at an altitude of 1470m. The study area is 

bound by the coordinates 00 39’12” S; 340 35’.40” E and 00 

59’16” S; 340 37’21” E. It receives an average annual rainfall of 

1833 mm, with a bimodal yearly seasonal pattern.  Average 

annual temperature is around 220 C, and humidity ranges between 

50 and 70 %. 

 

The agro-ecological system is characterized by loam, sandy and 

clay soils, with most of the agricultural activities being 

subsistence and small-scale agriculture. Crops grown in Rongo 

include maize, beans, groundnuts, green grams, cassava and 

some horticultural crops such as mangoes, banana, avocado, 

pawpaw and indigenous vegetables with sugarcane being the 

main cash crop in the area. The crop fields vary (±30 m2) in 

dimension. Due to the limited farmlands allocated to individual 

farmers, intercropping of maize with either beans, cowpea, and 

groundnuts is the main farming practice in the area.  

 

Figure 1: Domain and geographic location of the study area in 

Kenya and Migori subcounty. 

2.2 Data collection 

Field surveys were conducted between the 12th to the 16th of 

December 2017. This period coincided with peak Striga 

flowering phase and maize reproductive stages R1-R6. Reference 

data were gathered within croplands. In our study area, cropland 

system was mainly mono and mixed maize cropping. A stratified 

random sampling approach, using the administrative ward 

boundaries as strata was followed to determine areas with Striga 

the presence or absence reference data. A handheld Global 

Positioning System (GPS) instrument with an accuracy margin of 

±3 m was used to locate the reference data. We collected the 

presence or absence data at the centre of the field to avoid the 

influence of edge effect. We geo-tagged each plot in the sampled 

fields using photographs taken from the centre and the four 

cardinal directions for supplementary analysis of the cropping 

systems and crop age. Built-up area, Bare patches, Water and 

Natural vegetation reference data were collected by digitising 

Regions Of Interest (ROI) using visual interpretations of very 

high spatial resolution imagery within Google Earth® as 

described by Chemura et al., (2017) and summarised in Table 1. 

 
Class Class ID Description 

Bare patches 1 Surfaces without vegetation 
Built-up 2 Human made constructions 

Natural vegetation 3 Wood vegetation and 
grasslands 

Non-Striga fields 4 Crop fields without Striga 

Striga infested fields 5 Crop fields infested with 

Striga 

Water 6 Water bodies 

Table 1: Landcover classes used in the classification analysis for both 

PlanetScope and Sentinel-2 images 

 

2.3 Image acquisition and pre-processing 

Images of PS (16th December 2017) and S2 (13th December 

2017) were used in the analysis. PS was provided by Planet labs 

Inc https://www.planet.com and delivered as analytic 4-band 

product (VNIR) (Planet, 2018). The data was received as an 

Ortho Scene product (level 3B), which relates to Top of 

Atmosphere (TOA) radiance suitable for analytic and visual 

application. The scenes were provided already orthorectified to 

<10m RMSE position accuracy and projected to UTM/WGS84 

cartographic projection. The scaled radiance was converted to 

TOA reflectance using a Planet Labs python guide 
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(https://developers.planet.com/tutorials/convert-planetscope-

imagery-from-radiance-to-reflectance/) and the corresponding 

reflectance calibration coefficients associated with each band 

from the metadata.xml files. The scenes were mosaiced to cover 

the entire study area. Similarly, S2 data, processing level 1C was 

freely downloaded from the Copernicus data download platform 

https://scihub.copernicus.eu/dhus/#/home within the granule 

T36MXE. Level 1C data from Sentinels are provided as TOA 

reflectance, already orthorectified in cartographic geometry in 

tiles of 100 km2, UTM/WGS84 projection. These were converted 

to atmospherically corrected, surface reflectance Level 2A using 

the SEN2COR in SNAP v6.0 software run using the default 

parameter settings. The choice of images was informed by the 

alignment with the same period the field reference data was 

collected, the availability from the sensor’s archive and the 

corresponding cloud cover. All the images were acquired on days 

of low cloud cover (<5%) and during the period when vegetation 

was in full vigour. 

 

2.4 Broadband vegetation indices  

Seven vegetation indices were computed from PS and S2 images 

(Table 2). Visible and Near-infrared bands were used for this 

study to derive vegetation indices. The indices were computed, 

using the freely available SNAP v6.0 software. These indices 

were chosen founded on (1) their ability to reduce soil 

background effects, (2) their strength to separate between 

flowering and nonflowering plants and (3) capability to enhance 

vegetation greenness (Xue and Su, 2017). The Normalized 

Difference Vegetation Index (NDVI) has been successfully used 

to estimate biomass and crop yields (Chemura et al., 2017; Dube 

et al., 2015). Also, the usage of NDVI as opposed to the 

classification of raw bands is recommended for discrimination of 

vegetation from other non-photosynthetic classes (Bannari et al., 

1995; Matongera et al., 2017). Ratio Vegetation index (RVI) is 

based on the principle that leaves absorb more red than Near 

Infrared (NIR) (Bannari et al., 1995; Xue and Su, 2017). Two 

indices that correct for the influence of the soil background were 

used namely; the Modified Secondary Soil adjusted Vegetation 

Index (MSAVI2) and the Soil Adjusted Vegetation Index 

(SAVI). MSAVI2 does not rely on the soil line to eliminate the 

soil influence but introduces a function rather than a constant “L” 

value, which is secondary modification of SAVI and MSAVI. 

SAVI minimises the influence of soil brightness by introducing 

the soil condition “L”. The value of L ranges between 0 to 1, 

where values of L are close to zero, SAVI equals NDVI 

(Royimani et al., 2019). In this study we used L = 0.5 which is 

common practice for most environmental conditions (Xue and 

Su, 2017). The Atmospherically Resistant Vegetation Index 

(ARVI) is based on the correction of the atmospheric influences 

through the elimination of the effects of atmospheric aerosols 

using the difference between the blue (B) and red (R) bands. The 

Difference Vegetation Index (DVI), which subtracts the red band 

from the near infrared band, has been useful for vegetation 

monitoring, however, it is very sensitive to changes in the soil 

background (Bannari et al., 1995). Infrared Percentage 

Vegetation Index (IPVI) is recommended for vegetation mapping 

as it is mostly sensitive to vegetation cover and vegetation 

biomass (Royimani et al., 2019) 

 

 

 

 
 
 

 

 

Vegetation 

index 

Equation Reference 

Normalised 

Difference 
Vegetation 

Index 

(NDVI) 

 
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

(Abdel-

Rahman et 
al., 2016) 

 

Infrared 
Percentage 

Vegetation 

index (IPVI) 

 
𝑁𝐼𝑅

𝑁𝐼𝑅 + 𝑅
 

(Royimani 
et al., 2019) 

 

 

Simple 

Ratio/ Ratio 

Vegetation 
Index (RVI) 

 
𝑁𝐼𝑅

𝑅
 

(Evangelista 

et al., 2009) 

Soil 

Adjusted 

Vegetation 
Index 

(SAVI) 

 

 
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 𝐿 
 (1 + 𝐿) 

(Hadjimitsis 

et al., 2010) 

Modified 

Secondary 

Soil 
Adjusted 

Vegetation 

index 
(MSAVI2) 

 

 

0.5 X [2 NIR + 1 –  

 

√2(𝑁𝐼𝑅 + 1)2 − 8 (𝑁𝐼𝑅 − 𝑅)] 

(Xue and 

Su, 2017) 

Atmospheric 
Resistant 

Vegetation 

Index 
(ARVI) 

 

 
𝑁𝐼𝑅 − 𝑅𝐵

𝑁𝐼𝑅 + 𝑅𝐵
 

(Xue and 
Su, 2017) 

Difference 

Vegetation 
Index (DVI) 

 

𝑁𝐼𝑅 − 𝑅 

(Dube et al., 

2015) 

 

Table 2: Selected vegetation indices for the discrimination of Striga 
infested crop fields from other landcover classes: where RB in the 

Atmospheric Resistance Vegetation Index is the difference between the 

red band and blue band 
 

2.5 Guided Regularised Random Forest 

We used Guided Regularized Random Forest (GRRF) to select 

the most important bands and indices for the prediction of the six 

landcover classes (Table 1). Many researchers have used random 

forest as a dimensionality reduction tool to reduce data 

redundancy within explanatory variables (Dube et al., 2014; Han 

et al., 2017). However, research has shown disadvantages for the 

use of random forest as a tool to measure variable importance, as 

well as a variable selection method (Mureriwa et al., 2016). The 

package “RRF” in R software was used to perform the variable 

importance analysis and classification (Deng, 2013; R Core 

Team, 2018). A gamma value of 0.6 was used in the “CoefReg” 

function to determine the limit used to restrain the explanatory 

variables to the minimum without compromising on the capacity 

of the algorithm to predict accurately. Compared to the standard 

algorithms, the regularized framework significantly reduces the 

training time by building a single model (Deng and Runger, 

2013). The GRRF uses a similar concept of a RF model but uses 

the importance scores generated from RF to guide the variable 

selection process (Adam et al., 2017; Mureriwa et al., 2016). The 

importance value of a variable in RF is attained through the “Gini 

index” over all nodes, across all trees generated and the feature is 

used to split measure the pureness of the feature at every node to 

facilitate the voting process (Breiman, 2002). Hence, GRRF 

provides the precise variables that are most suitable for predicting 

the feature, out of the multiple features (Deng, 2013). Like the 
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standard algorithm of random forest for classification, the 

Regularised Random Forest algorithm is an ensemble machine 

learning approach, which combines a large set of decision trees 

(Breiman, 2001). The approach provides randomness by the 

bagging operation to fit numerous decision trees on random 

subsamples (Abdel-Rahman et al., 2013a; Adam et al., 2014). 

The multiple classification trees then vote by plurality on the 

correct classification (Royimani et al., 2019). Most studies rely 

on the Out of Bag (OOB) accuracy for the model evaluation, 

however the current study used a 10 times X 10-fold repeated 

cross-validation technique, set to train and validate the 

performance of the models (Immitzer et al., 2016). The three 

parameters, mtry and ntree = 500, flagReg = 1, were used as 

default using the tune length of 3. According to (Abdel-Rahman 

et al., 2013b) increasing ntree beyond 500 does not show a 

pronounced effect on Root Mean Square Error (RMSE). 

 

2.6 Accuracy Assessment 

Data generated from the digitised training areas were split into 

two datasets 70% and 30%, which is “Training” and “Testing” 

respectively, as per the standard machine learning evaluation 

criteria (Dube et al., 2014; Kyalo et al., 2017). Model testing data 

was used in the construction of the confusion matrices for the 

validation of the performance of the GRRF model. The Overall 

Accuracy (OA), User's Accuracy (UA) and the Producer's 

Accuracy (PA) were used together with Kappa statistics to 

evaluate the performance of the classifier and the sensors.  

 

 

3. RESULTS AND DISCUSSION 

3.1 Variable selection using Guided Regularised Random 

Forest 

Results from both PS and S2 imagery show that the visible bands 

(Blue, Green and Red) were critical for separating the two Striga 

classes (Striga and non-Striga infested fields) from the four land 

cover classes (bare patches, built-up, natural vegetation and 

water). The GRRF was able to determine only six key variables 

from S2 and five variables for prediction using PS. Amongst the 

vegetation indices, only ARVI and NDVI for S2 were selected 

by the GRRF whilst ARVI and IPVI were selected for the PS 

(Figure 2). These results prove the strength and importance of the 

raw bands of these two sensors in discriminating vegetation from 

manmade features. However, the indices were also crucial for 

highlighting plant inherent properties associated with leaf 

properties, such as chlorophyll content and vigour. Vegetation 

indices have specific expressions and ratios, which can represent 

green vegetation properties better than using individual bands 

(Baloloy et al., 2018). NDVI has been tested in various related 

research and has proven a valuable index correlated to 

biophysical plant characteristics such as chlorophyll content and 

LAI (Baugh and Groeneveld, 2006). Similarly, ARVI is a 

modified version of NDVI that overcomes the influence of the 

atmosphere. 

 
 

Figure 2: Variable importance percentage for both Sentinel-2 

and PlanetScope derived metrics using the GRRF variable 

selection measure 

 

3.2 Mapping accuracy assessment 

The use of S2 selected variables (Red, Green, Blue, Near-infrared 

and ARVI) produced an overall accuracy of 87% and Kappa of 

0.82 in detecting Striga occurrence in maize fields (Figure 3). The 

results were slightly lower (-5% deviation) compared to those 

obtained using PS. The results show that PS selected variables 

(Red, Green, Blue, ARVI and IPVI) produced the slightly higher 

Land Use/Land cover (LULC) mapping results (92%) and Kappa 

of 0.89.  The use of a few systematically selected number of 

effective bands has shown that it is possible to attain and exceed 

the classification accuracy of the entire waveband dataset (Cao et 

al., 2018). This also reduces the redundancy produced by 

correlated variables. The GRRF process decreases the 

multidimensionality of the variable data without compromising 

key information relevant to the features (Adam et al., 2017; 

Deng, 2013; Mureriwa et al., 2016) 

 

 
Figure 3: Model prediction performances using Accuracy and 

Kappa for bands only variables (*.bands), combined indices and 

bands(*.combined) and Guided Regularized Random Forest 

(GRRF) selected variables (*.selected) using PlanetScope (PS) 

and Sentinel-2 (S2) imagery. 
 

Although S2 and PS both performed very well in predicting other 

classes, the accuracy results for Striga and non-Striga fields was 

low 66% and 72% respectively (Table 3). Based on the accuracy 

produced by the single scene of PS, these results demonstrate the 

±175 CubeSats constellation are a relevant source of spatial data 

capable of consistently monitoring the presence of Striga and 

other landcover classes.  However, due to the limiting costs of 

acquisition of the PS imagery, S2 produced acceptable 

accuracies, which are essential for monitoring Striga occurrence. 
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These classification errors are related to the split of cropland 

classes into Striga and non-Striga crop fields, which have similar 

spectral responses. The split was necessary to differentiate maize 

fields infested with Striga and non-infested fields. The 

classification error margins could also be attributed to the 

complexity produced by the miniature (< 30m2) heterogenous 

fields mainly with intercropped plants which characterise the 

study area. Since other non-cropland classes could be classified 

with very high accuracy these results could potentially be 

improved by masking other classes except cropland and 

predicting Striga within the cropland class. 

 
 
 

Class 

PlanetScope Sentinel-2 

Combine

d 

variables 

GRRF 

selected 

variables 

Combined 

variables 

GRRF 

selected 

variables 

PA U

A 

PA U

A 

PA U

A 

PA UA 

Bare 92 95 93 96 88 92 88 91 

Built-up 93 87 93 88 92 85 90 85 

Natural 
Vegetation 

98 99 98 99 96 95 94 96 

Non Striga 

Fields 

70 70 67 70 51 52 53 56 

Striga Fields 65 72 67 68 53 66 54 52 

Water 89 94 91 91 100 97 93 93 

OA 92% 92% 88% 87% 

Kappa 0.89 0.89 0.83 0.82 

 

Table 3: Summarized confusion matrices and classification 

accuracies, Overall accuracy (OA), Producer’s Accuracy (PA) 

User’s Accuracy (UA) and Kappa statistics using the Guided 

Regularised Random Forest image classification of PS and S2 

comparing combined variables (all bands and all indices) and 

GRRF selected variables (fewer optimum bands and indices 

selected with the Guided Regularised Random Forest algorithm. 

 

3.3 Striga mapping 

The final thematic maps produced via the GRRF algorithm are 

shown in Figure 4. Both images show that much of the Striga 

infestation is in the North and North-West of Rongo whilst low 

on the south. The south is mainly characterised by sugarcane 

farms, which are less susceptible to Striga infestation whereas the 

North and Northwest regions are predominantly maize fields. 

There are patches of Striga infested fields within the built-up area 

surrounding Rongo Town. Most of the urban dwellers practice 

urban agriculture, hence the presence of Striga within the vicinity 

of the central business district. 

 

Both images ably predicted for the built-up, water, natural 

vegetation and bare areas. The ability of these two sensors and 

the capability of the GRRF model to separate these classes is 

commendable. Interestingly, there were able to classify the river 

quite distinctively from the rest of all the surrounding classes. 

Apart from the capacity to map striga these results confirm the 

potential of S2 to monitor LCLU changes over large landscape 

scales. 

 

 

 
Figure 4: Land use and land cover map of Rongo showing the 

distribution of Striga infested fields from the GRRF 

classification of PlanetScope and Sentinel-2. 
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4. CONCLUSION 

We conclude that: 

• Sentinel 2 sensor was capable of detecting and mapping Striga 

infested maize fields with high accuracy, almost similar those 

derived using PS metrics. 

• The GRRF feature selection shortlisted the Red, Green, Blue, 

Near-infrared and ARVI as the most important variables for 

predicting Striga occurrence, with an overall classification 

accuracy of 87% (-5% deviation from PS selected variable 

performance. 

Overall, the findings of this work provide baseline information 

appropriate to devise adaptive weed management strategies in 

Sub-Saharan Africa. However, since the results proved that there 

were errors of commission between Striga and non-Striga fields 

caused by similarities in the spectral behaviours of the crops, we 

recommend that a hierarchical approach be tested by masking out 

croplands and using subpixel-unmixing technics to improve the 

detection ability of Striga occurrence. Since Striga swiftly 

invades agro-ecological landscapes, we also suggest landscape 

scale monitoring of Striga using multi-date Sentinel 2 data. Long-

term remote sensing applications are effective in defining spatial 

trends and evolution of the distribution invasive weeds over time 
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